Step |
Hyp |
Ref |
Expression |
1 |
|
pmapsubcl.b |
|- B = ( Base ` K ) |
2 |
|
pmapsubcl.m |
|- M = ( pmap ` K ) |
3 |
|
pmapsubcl.c |
|- C = ( PSubCl ` K ) |
4 |
|
eqid |
|- ( Atoms ` K ) = ( Atoms ` K ) |
5 |
1 4 2
|
pmapssat |
|- ( ( K e. HL /\ X e. B ) -> ( M ` X ) C_ ( Atoms ` K ) ) |
6 |
|
eqid |
|- ( _|_P ` K ) = ( _|_P ` K ) |
7 |
1 2 6
|
2polpmapN |
|- ( ( K e. HL /\ X e. B ) -> ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` ( M ` X ) ) ) = ( M ` X ) ) |
8 |
4 6 3
|
ispsubclN |
|- ( K e. HL -> ( ( M ` X ) e. C <-> ( ( M ` X ) C_ ( Atoms ` K ) /\ ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` ( M ` X ) ) ) = ( M ` X ) ) ) ) |
9 |
8
|
adantr |
|- ( ( K e. HL /\ X e. B ) -> ( ( M ` X ) e. C <-> ( ( M ` X ) C_ ( Atoms ` K ) /\ ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` ( M ` X ) ) ) = ( M ` X ) ) ) ) |
10 |
5 7 9
|
mpbir2and |
|- ( ( K e. HL /\ X e. B ) -> ( M ` X ) e. C ) |