Metamath Proof Explorer


Theorem pmat0op

Description: The zero polynomial matrix over a ring represented as operation. (Contributed by AV, 16-Nov-2019)

Ref Expression
Hypotheses pmatring.p
|- P = ( Poly1 ` R )
pmatring.c
|- C = ( N Mat P )
pmat0op.z
|- .0. = ( 0g ` P )
Assertion pmat0op
|- ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` C ) = ( i e. N , j e. N |-> .0. ) )

Proof

Step Hyp Ref Expression
1 pmatring.p
 |-  P = ( Poly1 ` R )
2 pmatring.c
 |-  C = ( N Mat P )
3 pmat0op.z
 |-  .0. = ( 0g ` P )
4 1 ply1ring
 |-  ( R e. Ring -> P e. Ring )
5 2 3 mat0op
 |-  ( ( N e. Fin /\ P e. Ring ) -> ( 0g ` C ) = ( i e. N , j e. N |-> .0. ) )
6 4 5 sylan2
 |-  ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` C ) = ( i e. N , j e. N |-> .0. ) )