Description: The zero polynomial matrix over a ring represented as operation. (Contributed by AV, 16-Nov-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pmatring.p | |- P = ( Poly1 ` R ) |
|
pmatring.c | |- C = ( N Mat P ) |
||
pmat0op.z | |- .0. = ( 0g ` P ) |
||
Assertion | pmat0op | |- ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` C ) = ( i e. N , j e. N |-> .0. ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmatring.p | |- P = ( Poly1 ` R ) |
|
2 | pmatring.c | |- C = ( N Mat P ) |
|
3 | pmat0op.z | |- .0. = ( 0g ` P ) |
|
4 | 1 | ply1ring | |- ( R e. Ring -> P e. Ring ) |
5 | 2 3 | mat0op | |- ( ( N e. Fin /\ P e. Ring ) -> ( 0g ` C ) = ( i e. N , j e. N |-> .0. ) ) |
6 | 4 5 | sylan2 | |- ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` C ) = ( i e. N , j e. N |-> .0. ) ) |