Description: The zero polynomial matrix over a ring represented as operation. (Contributed by AV, 16-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmatring.p | |- P = ( Poly1 ` R )  | 
					|
| pmatring.c | |- C = ( N Mat P )  | 
					||
| pmat0op.z | |- .0. = ( 0g ` P )  | 
					||
| Assertion | pmat0op | |- ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` C ) = ( i e. N , j e. N |-> .0. ) )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pmatring.p | |- P = ( Poly1 ` R )  | 
						|
| 2 | pmatring.c | |- C = ( N Mat P )  | 
						|
| 3 | pmat0op.z | |- .0. = ( 0g ` P )  | 
						|
| 4 | 1 | ply1ring | |- ( R e. Ring -> P e. Ring )  | 
						
| 5 | 2 3 | mat0op | |- ( ( N e. Fin /\ P e. Ring ) -> ( 0g ` C ) = ( i e. N , j e. N |-> .0. ) )  | 
						
| 6 | 4 5 | sylan2 | |- ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` C ) = ( i e. N , j e. N |-> .0. ) )  |