Metamath Proof Explorer


Theorem pmat0opsc

Description: The zero polynomial matrix over a ring represented as operation with "lifted scalars" (i.e. elements of the ring underlying the polynomial ring embedded into the polynomial ring by the scalar injection/algebraic scalars function algSc ). (Contributed by AV, 16-Nov-2019)

Ref Expression
Hypotheses pmat0opsc.p
|- P = ( Poly1 ` R )
pmat0opsc.c
|- C = ( N Mat P )
pmat0opsc.a
|- A = ( algSc ` P )
pmat0opsc.z
|- .0. = ( 0g ` R )
Assertion pmat0opsc
|- ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` C ) = ( i e. N , j e. N |-> ( A ` .0. ) ) )

Proof

Step Hyp Ref Expression
1 pmat0opsc.p
 |-  P = ( Poly1 ` R )
2 pmat0opsc.c
 |-  C = ( N Mat P )
3 pmat0opsc.a
 |-  A = ( algSc ` P )
4 pmat0opsc.z
 |-  .0. = ( 0g ` R )
5 eqid
 |-  ( 0g ` P ) = ( 0g ` P )
6 1 2 5 pmat0op
 |-  ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` C ) = ( i e. N , j e. N |-> ( 0g ` P ) ) )
7 1 3 4 5 ply1scl0
 |-  ( R e. Ring -> ( A ` .0. ) = ( 0g ` P ) )
8 7 eqcomd
 |-  ( R e. Ring -> ( 0g ` P ) = ( A ` .0. ) )
9 8 adantl
 |-  ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` P ) = ( A ` .0. ) )
10 9 mpoeq3dv
 |-  ( ( N e. Fin /\ R e. Ring ) -> ( i e. N , j e. N |-> ( 0g ` P ) ) = ( i e. N , j e. N |-> ( A ` .0. ) ) )
11 6 10 eqtrd
 |-  ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` C ) = ( i e. N , j e. N |-> ( A ` .0. ) ) )