| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pmat0opsc.p | 
							 |-  P = ( Poly1 ` R )  | 
						
						
							| 2 | 
							
								
							 | 
							pmat0opsc.c | 
							 |-  C = ( N Mat P )  | 
						
						
							| 3 | 
							
								
							 | 
							pmat0opsc.a | 
							 |-  A = ( algSc ` P )  | 
						
						
							| 4 | 
							
								
							 | 
							pmat0opsc.z | 
							 |-  .0. = ( 0g ` R )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							 |-  ( 0g ` P ) = ( 0g ` P )  | 
						
						
							| 6 | 
							
								1 2 5
							 | 
							pmat0op | 
							 |-  ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` C ) = ( i e. N , j e. N |-> ( 0g ` P ) ) )  | 
						
						
							| 7 | 
							
								1 3 4 5
							 | 
							ply1scl0 | 
							 |-  ( R e. Ring -> ( A ` .0. ) = ( 0g ` P ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							eqcomd | 
							 |-  ( R e. Ring -> ( 0g ` P ) = ( A ` .0. ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							adantl | 
							 |-  ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` P ) = ( A ` .0. ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							mpoeq3dv | 
							 |-  ( ( N e. Fin /\ R e. Ring ) -> ( i e. N , j e. N |-> ( 0g ` P ) ) = ( i e. N , j e. N |-> ( A ` .0. ) ) )  | 
						
						
							| 11 | 
							
								6 10
							 | 
							eqtrd | 
							 |-  ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` C ) = ( i e. N , j e. N |-> ( A ` .0. ) ) )  |