Metamath Proof Explorer


Theorem pmat1op

Description: The identity polynomial matrix over a ring represented as operation. (Contributed by AV, 16-Nov-2019)

Ref Expression
Hypotheses pmatring.p
|- P = ( Poly1 ` R )
pmatring.c
|- C = ( N Mat P )
pmat0op.z
|- .0. = ( 0g ` P )
pmat1op.o
|- .1. = ( 1r ` P )
Assertion pmat1op
|- ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` C ) = ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) )

Proof

Step Hyp Ref Expression
1 pmatring.p
 |-  P = ( Poly1 ` R )
2 pmatring.c
 |-  C = ( N Mat P )
3 pmat0op.z
 |-  .0. = ( 0g ` P )
4 pmat1op.o
 |-  .1. = ( 1r ` P )
5 1 ply1ring
 |-  ( R e. Ring -> P e. Ring )
6 2 4 3 mat1
 |-  ( ( N e. Fin /\ P e. Ring ) -> ( 1r ` C ) = ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) )
7 5 6 sylan2
 |-  ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` C ) = ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) )