Description: The identity polynomial matrix over a ring represented as operation. (Contributed by AV, 16-Nov-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pmatring.p | |- P = ( Poly1 ` R ) |
|
pmatring.c | |- C = ( N Mat P ) |
||
pmat0op.z | |- .0. = ( 0g ` P ) |
||
pmat1op.o | |- .1. = ( 1r ` P ) |
||
Assertion | pmat1op | |- ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` C ) = ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmatring.p | |- P = ( Poly1 ` R ) |
|
2 | pmatring.c | |- C = ( N Mat P ) |
|
3 | pmat0op.z | |- .0. = ( 0g ` P ) |
|
4 | pmat1op.o | |- .1. = ( 1r ` P ) |
|
5 | 1 | ply1ring | |- ( R e. Ring -> P e. Ring ) |
6 | 2 4 3 | mat1 | |- ( ( N e. Fin /\ P e. Ring ) -> ( 1r ` C ) = ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ) |
7 | 5 6 | sylan2 | |- ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` C ) = ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ) |