| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmat0opsc.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
pmat0opsc.c |
|- C = ( N Mat P ) |
| 3 |
|
pmat0opsc.a |
|- A = ( algSc ` P ) |
| 4 |
|
pmat0opsc.z |
|- .0. = ( 0g ` R ) |
| 5 |
|
pmat1opsc.o |
|- .1. = ( 1r ` R ) |
| 6 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
| 7 |
|
eqid |
|- ( 1r ` P ) = ( 1r ` P ) |
| 8 |
1 2 6 7
|
pmat1op |
|- ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` C ) = ( i e. N , j e. N |-> if ( i = j , ( 1r ` P ) , ( 0g ` P ) ) ) ) |
| 9 |
1 3 5 7
|
ply1scl1 |
|- ( R e. Ring -> ( A ` .1. ) = ( 1r ` P ) ) |
| 10 |
9
|
eqcomd |
|- ( R e. Ring -> ( 1r ` P ) = ( A ` .1. ) ) |
| 11 |
1 3 4 6
|
ply1scl0 |
|- ( R e. Ring -> ( A ` .0. ) = ( 0g ` P ) ) |
| 12 |
11
|
eqcomd |
|- ( R e. Ring -> ( 0g ` P ) = ( A ` .0. ) ) |
| 13 |
10 12
|
ifeq12d |
|- ( R e. Ring -> if ( i = j , ( 1r ` P ) , ( 0g ` P ) ) = if ( i = j , ( A ` .1. ) , ( A ` .0. ) ) ) |
| 14 |
13
|
adantl |
|- ( ( N e. Fin /\ R e. Ring ) -> if ( i = j , ( 1r ` P ) , ( 0g ` P ) ) = if ( i = j , ( A ` .1. ) , ( A ` .0. ) ) ) |
| 15 |
14
|
mpoeq3dv |
|- ( ( N e. Fin /\ R e. Ring ) -> ( i e. N , j e. N |-> if ( i = j , ( 1r ` P ) , ( 0g ` P ) ) ) = ( i e. N , j e. N |-> if ( i = j , ( A ` .1. ) , ( A ` .0. ) ) ) ) |
| 16 |
8 15
|
eqtrd |
|- ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` C ) = ( i e. N , j e. N |-> if ( i = j , ( A ` .1. ) , ( A ` .0. ) ) ) ) |