Description: Entries of the identity polynomial matrix over a ring, deduction form. (Contributed by AV, 16-Nov-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pmatring.p | |- P = ( Poly1 ` R ) |
|
pmatring.c | |- C = ( N Mat P ) |
||
pmat0op.z | |- .0. = ( 0g ` P ) |
||
pmat1op.o | |- .1. = ( 1r ` P ) |
||
pmat1ovd.n | |- ( ph -> N e. Fin ) |
||
pmat1ovd.r | |- ( ph -> R e. Ring ) |
||
pmat1ovd.i | |- ( ph -> I e. N ) |
||
pmat1ovd.j | |- ( ph -> J e. N ) |
||
pmat1ovd.u | |- U = ( 1r ` C ) |
||
Assertion | pmat1ovd | |- ( ph -> ( I U J ) = if ( I = J , .1. , .0. ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmatring.p | |- P = ( Poly1 ` R ) |
|
2 | pmatring.c | |- C = ( N Mat P ) |
|
3 | pmat0op.z | |- .0. = ( 0g ` P ) |
|
4 | pmat1op.o | |- .1. = ( 1r ` P ) |
|
5 | pmat1ovd.n | |- ( ph -> N e. Fin ) |
|
6 | pmat1ovd.r | |- ( ph -> R e. Ring ) |
|
7 | pmat1ovd.i | |- ( ph -> I e. N ) |
|
8 | pmat1ovd.j | |- ( ph -> J e. N ) |
|
9 | pmat1ovd.u | |- U = ( 1r ` C ) |
|
10 | 1 | ply1ring | |- ( R e. Ring -> P e. Ring ) |
11 | 6 10 | syl | |- ( ph -> P e. Ring ) |
12 | 2 4 3 5 11 7 8 9 | mat1ov | |- ( ph -> ( I U J ) = if ( I = J , .1. , .0. ) ) |