| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pmat0opsc.p | 
							 |-  P = ( Poly1 ` R )  | 
						
						
							| 2 | 
							
								
							 | 
							pmat0opsc.c | 
							 |-  C = ( N Mat P )  | 
						
						
							| 3 | 
							
								
							 | 
							pmat0opsc.a | 
							 |-  A = ( algSc ` P )  | 
						
						
							| 4 | 
							
								
							 | 
							pmat0opsc.z | 
							 |-  .0. = ( 0g ` R )  | 
						
						
							| 5 | 
							
								
							 | 
							pmat1opsc.o | 
							 |-  .1. = ( 1r ` R )  | 
						
						
							| 6 | 
							
								
							 | 
							pmat1ovscd.n | 
							 |-  ( ph -> N e. Fin )  | 
						
						
							| 7 | 
							
								
							 | 
							pmat1ovscd.r | 
							 |-  ( ph -> R e. Ring )  | 
						
						
							| 8 | 
							
								
							 | 
							pmat1ovscd.i | 
							 |-  ( ph -> I e. N )  | 
						
						
							| 9 | 
							
								
							 | 
							pmat1ovscd.j | 
							 |-  ( ph -> J e. N )  | 
						
						
							| 10 | 
							
								
							 | 
							pmat1ovscd.u | 
							 |-  U = ( 1r ` C )  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							 |-  ( 0g ` P ) = ( 0g ` P )  | 
						
						
							| 12 | 
							
								
							 | 
							eqid | 
							 |-  ( 1r ` P ) = ( 1r ` P )  | 
						
						
							| 13 | 
							
								1 2 11 12 6 7 8 9 10
							 | 
							pmat1ovd | 
							 |-  ( ph -> ( I U J ) = if ( I = J , ( 1r ` P ) , ( 0g ` P ) ) )  | 
						
						
							| 14 | 
							
								1 3 5 12
							 | 
							ply1scl1 | 
							 |-  ( R e. Ring -> ( A ` .1. ) = ( 1r ` P ) )  | 
						
						
							| 15 | 
							
								7 14
							 | 
							syl | 
							 |-  ( ph -> ( A ` .1. ) = ( 1r ` P ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							eqcomd | 
							 |-  ( ph -> ( 1r ` P ) = ( A ` .1. ) )  | 
						
						
							| 17 | 
							
								1 3 4 11
							 | 
							ply1scl0 | 
							 |-  ( R e. Ring -> ( A ` .0. ) = ( 0g ` P ) )  | 
						
						
							| 18 | 
							
								7 17
							 | 
							syl | 
							 |-  ( ph -> ( A ` .0. ) = ( 0g ` P ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							eqcomd | 
							 |-  ( ph -> ( 0g ` P ) = ( A ` .0. ) )  | 
						
						
							| 20 | 
							
								16 19
							 | 
							ifeq12d | 
							 |-  ( ph -> if ( I = J , ( 1r ` P ) , ( 0g ` P ) ) = if ( I = J , ( A ` .1. ) , ( A ` .0. ) ) )  | 
						
						
							| 21 | 
							
								13 20
							 | 
							eqtrd | 
							 |-  ( ph -> ( I U J ) = if ( I = J , ( A ` .1. ) , ( A ` .0. ) ) )  |