Description: The set of polynomial matrices over a commutative ring is an associative algebra. (Contributed by AV, 16-Jun-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pmatring.p | |- P = ( Poly1 ` R ) |
|
pmatring.c | |- C = ( N Mat P ) |
||
Assertion | pmatassa | |- ( ( N e. Fin /\ R e. CRing ) -> C e. AssAlg ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmatring.p | |- P = ( Poly1 ` R ) |
|
2 | pmatring.c | |- C = ( N Mat P ) |
|
3 | 1 | ply1crng | |- ( R e. CRing -> P e. CRing ) |
4 | 2 | matassa | |- ( ( N e. Fin /\ P e. CRing ) -> C e. AssAlg ) |
5 | 3 4 | sylan2 | |- ( ( N e. Fin /\ R e. CRing ) -> C e. AssAlg ) |