Metamath Proof Explorer


Theorem pmatassa

Description: The set of polynomial matrices over a commutative ring is an associative algebra. (Contributed by AV, 16-Jun-2024)

Ref Expression
Hypotheses pmatring.p
|- P = ( Poly1 ` R )
pmatring.c
|- C = ( N Mat P )
Assertion pmatassa
|- ( ( N e. Fin /\ R e. CRing ) -> C e. AssAlg )

Proof

Step Hyp Ref Expression
1 pmatring.p
 |-  P = ( Poly1 ` R )
2 pmatring.c
 |-  C = ( N Mat P )
3 1 ply1crng
 |-  ( R e. CRing -> P e. CRing )
4 2 matassa
 |-  ( ( N e. Fin /\ P e. CRing ) -> C e. AssAlg )
5 3 4 sylan2
 |-  ( ( N e. Fin /\ R e. CRing ) -> C e. AssAlg )