| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pmatcollpw.p | 
							 |-  P = ( Poly1 ` R )  | 
						
						
							| 2 | 
							
								
							 | 
							pmatcollpw.c | 
							 |-  C = ( N Mat P )  | 
						
						
							| 3 | 
							
								
							 | 
							pmatcollpw.b | 
							 |-  B = ( Base ` C )  | 
						
						
							| 4 | 
							
								
							 | 
							pmatcollpw.m | 
							 |-  .* = ( .s ` C )  | 
						
						
							| 5 | 
							
								
							 | 
							pmatcollpw.e | 
							 |-  .^ = ( .g ` ( mulGrp ` P ) )  | 
						
						
							| 6 | 
							
								
							 | 
							pmatcollpw.x | 
							 |-  X = ( var1 ` R )  | 
						
						
							| 7 | 
							
								
							 | 
							pmatcollpw.t | 
							 |-  T = ( N matToPolyMat R )  | 
						
						
							| 8 | 
							
								
							 | 
							pmatcollpw3.a | 
							 |-  A = ( N Mat R )  | 
						
						
							| 9 | 
							
								
							 | 
							pmatcollpw3.d | 
							 |-  D = ( Base ` A )  | 
						
						
							| 10 | 
							
								1 2 3 4 5 6 7
							 | 
							pmatcollpw | 
							 |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> M = ( C gsum ( n e. NN0 |-> ( ( n .^ X ) .* ( T ` ( M decompPMat n ) ) ) ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							ssid | 
							 |-  NN0 C_ NN0  | 
						
						
							| 12 | 
							
								
							 | 
							0nn0 | 
							 |-  0 e. NN0  | 
						
						
							| 13 | 
							
								12
							 | 
							ne0ii | 
							 |-  NN0 =/= (/)  | 
						
						
							| 14 | 
							
								1 2 3 4 5 6 7 8 9
							 | 
							pmatcollpw3lem | 
							 |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( NN0 C_ NN0 /\ NN0 =/= (/) ) ) -> ( M = ( C gsum ( n e. NN0 |-> ( ( n .^ X ) .* ( T ` ( M decompPMat n ) ) ) ) ) -> E. f e. ( D ^m NN0 ) M = ( C gsum ( n e. NN0 |-> ( ( n .^ X ) .* ( T ` ( f ` n ) ) ) ) ) ) )  | 
						
						
							| 15 | 
							
								11 13 14
							 | 
							mpanr12 | 
							 |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( M = ( C gsum ( n e. NN0 |-> ( ( n .^ X ) .* ( T ` ( M decompPMat n ) ) ) ) ) -> E. f e. ( D ^m NN0 ) M = ( C gsum ( n e. NN0 |-> ( ( n .^ X ) .* ( T ` ( f ` n ) ) ) ) ) ) )  | 
						
						
							| 16 | 
							
								10 15
							 | 
							mpd | 
							 |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> E. f e. ( D ^m NN0 ) M = ( C gsum ( n e. NN0 |-> ( ( n .^ X ) .* ( T ` ( f ` n ) ) ) ) ) )  |