Step |
Hyp |
Ref |
Expression |
1 |
|
pmatcollpw.p |
|- P = ( Poly1 ` R ) |
2 |
|
pmatcollpw.c |
|- C = ( N Mat P ) |
3 |
|
pmatcollpw.b |
|- B = ( Base ` C ) |
4 |
|
pmatcollpw.m |
|- .* = ( .s ` C ) |
5 |
|
pmatcollpw.e |
|- .^ = ( .g ` ( mulGrp ` P ) ) |
6 |
|
pmatcollpw.x |
|- X = ( var1 ` R ) |
7 |
|
pmatcollpw.t |
|- T = ( N matToPolyMat R ) |
8 |
|
pmatcollpw3.a |
|- A = ( N Mat R ) |
9 |
|
pmatcollpw3.d |
|- D = ( Base ` A ) |
10 |
1 2 3 4 5 6 7
|
pmatcollpwfi |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> E. s e. NN0 M = ( C gsum ( n e. ( 0 ... s ) |-> ( ( n .^ X ) .* ( T ` ( M decompPMat n ) ) ) ) ) ) |
11 |
|
elnn0uz |
|- ( s e. NN0 <-> s e. ( ZZ>= ` 0 ) ) |
12 |
|
fzn0 |
|- ( ( 0 ... s ) =/= (/) <-> s e. ( ZZ>= ` 0 ) ) |
13 |
11 12
|
sylbb2 |
|- ( s e. NN0 -> ( 0 ... s ) =/= (/) ) |
14 |
|
fz0ssnn0 |
|- ( 0 ... s ) C_ NN0 |
15 |
13 14
|
jctil |
|- ( s e. NN0 -> ( ( 0 ... s ) C_ NN0 /\ ( 0 ... s ) =/= (/) ) ) |
16 |
1 2 3 4 5 6 7 8 9
|
pmatcollpw3lem |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( ( 0 ... s ) C_ NN0 /\ ( 0 ... s ) =/= (/) ) ) -> ( M = ( C gsum ( n e. ( 0 ... s ) |-> ( ( n .^ X ) .* ( T ` ( M decompPMat n ) ) ) ) ) -> E. f e. ( D ^m ( 0 ... s ) ) M = ( C gsum ( n e. ( 0 ... s ) |-> ( ( n .^ X ) .* ( T ` ( f ` n ) ) ) ) ) ) ) |
17 |
15 16
|
sylan2 |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN0 ) -> ( M = ( C gsum ( n e. ( 0 ... s ) |-> ( ( n .^ X ) .* ( T ` ( M decompPMat n ) ) ) ) ) -> E. f e. ( D ^m ( 0 ... s ) ) M = ( C gsum ( n e. ( 0 ... s ) |-> ( ( n .^ X ) .* ( T ` ( f ` n ) ) ) ) ) ) ) |
18 |
17
|
reximdva |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( E. s e. NN0 M = ( C gsum ( n e. ( 0 ... s ) |-> ( ( n .^ X ) .* ( T ` ( M decompPMat n ) ) ) ) ) -> E. s e. NN0 E. f e. ( D ^m ( 0 ... s ) ) M = ( C gsum ( n e. ( 0 ... s ) |-> ( ( n .^ X ) .* ( T ` ( f ` n ) ) ) ) ) ) ) |
19 |
10 18
|
mpd |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> E. s e. NN0 E. f e. ( D ^m ( 0 ... s ) ) M = ( C gsum ( n e. ( 0 ... s ) |-> ( ( n .^ X ) .* ( T ` ( f ` n ) ) ) ) ) ) |