| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pmatcollpw.p | 
							 |-  P = ( Poly1 ` R )  | 
						
						
							| 2 | 
							
								
							 | 
							pmatcollpw.c | 
							 |-  C = ( N Mat P )  | 
						
						
							| 3 | 
							
								
							 | 
							pmatcollpw.b | 
							 |-  B = ( Base ` C )  | 
						
						
							| 4 | 
							
								
							 | 
							pmatcollpw.m | 
							 |-  .* = ( .s ` C )  | 
						
						
							| 5 | 
							
								
							 | 
							pmatcollpw.e | 
							 |-  .^ = ( .g ` ( mulGrp ` P ) )  | 
						
						
							| 6 | 
							
								
							 | 
							pmatcollpw.x | 
							 |-  X = ( var1 ` R )  | 
						
						
							| 7 | 
							
								
							 | 
							pmatcollpw.t | 
							 |-  T = ( N matToPolyMat R )  | 
						
						
							| 8 | 
							
								
							 | 
							pmatcollpw3.a | 
							 |-  A = ( N Mat R )  | 
						
						
							| 9 | 
							
								
							 | 
							pmatcollpw3.d | 
							 |-  D = ( Base ` A )  | 
						
						
							| 10 | 
							
								1 2 3 4 5 6 7
							 | 
							pmatcollpwfi | 
							 |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> E. s e. NN0 M = ( C gsum ( n e. ( 0 ... s ) |-> ( ( n .^ X ) .* ( T ` ( M decompPMat n ) ) ) ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							elnn0uz | 
							 |-  ( s e. NN0 <-> s e. ( ZZ>= ` 0 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							fzn0 | 
							 |-  ( ( 0 ... s ) =/= (/) <-> s e. ( ZZ>= ` 0 ) )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							sylbb2 | 
							 |-  ( s e. NN0 -> ( 0 ... s ) =/= (/) )  | 
						
						
							| 14 | 
							
								
							 | 
							fz0ssnn0 | 
							 |-  ( 0 ... s ) C_ NN0  | 
						
						
							| 15 | 
							
								13 14
							 | 
							jctil | 
							 |-  ( s e. NN0 -> ( ( 0 ... s ) C_ NN0 /\ ( 0 ... s ) =/= (/) ) )  | 
						
						
							| 16 | 
							
								1 2 3 4 5 6 7 8 9
							 | 
							pmatcollpw3lem | 
							 |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( ( 0 ... s ) C_ NN0 /\ ( 0 ... s ) =/= (/) ) ) -> ( M = ( C gsum ( n e. ( 0 ... s ) |-> ( ( n .^ X ) .* ( T ` ( M decompPMat n ) ) ) ) ) -> E. f e. ( D ^m ( 0 ... s ) ) M = ( C gsum ( n e. ( 0 ... s ) |-> ( ( n .^ X ) .* ( T ` ( f ` n ) ) ) ) ) ) )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							sylan2 | 
							 |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN0 ) -> ( M = ( C gsum ( n e. ( 0 ... s ) |-> ( ( n .^ X ) .* ( T ` ( M decompPMat n ) ) ) ) ) -> E. f e. ( D ^m ( 0 ... s ) ) M = ( C gsum ( n e. ( 0 ... s ) |-> ( ( n .^ X ) .* ( T ` ( f ` n ) ) ) ) ) ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							reximdva | 
							 |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( E. s e. NN0 M = ( C gsum ( n e. ( 0 ... s ) |-> ( ( n .^ X ) .* ( T ` ( M decompPMat n ) ) ) ) ) -> E. s e. NN0 E. f e. ( D ^m ( 0 ... s ) ) M = ( C gsum ( n e. ( 0 ... s ) |-> ( ( n .^ X ) .* ( T ` ( f ` n ) ) ) ) ) ) )  | 
						
						
							| 19 | 
							
								10 18
							 | 
							mpd | 
							 |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> E. s e. NN0 E. f e. ( D ^m ( 0 ... s ) ) M = ( C gsum ( n e. ( 0 ... s ) |-> ( ( n .^ X ) .* ( T ` ( f ` n ) ) ) ) ) )  |