| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pmatcollpw.p | 
							 |-  P = ( Poly1 ` R )  | 
						
						
							| 2 | 
							
								
							 | 
							pmatcollpw.c | 
							 |-  C = ( N Mat P )  | 
						
						
							| 3 | 
							
								
							 | 
							pmatcollpw.b | 
							 |-  B = ( Base ` C )  | 
						
						
							| 4 | 
							
								
							 | 
							pmatcollpw.m | 
							 |-  .* = ( .s ` C )  | 
						
						
							| 5 | 
							
								
							 | 
							pmatcollpw.e | 
							 |-  .^ = ( .g ` ( mulGrp ` P ) )  | 
						
						
							| 6 | 
							
								
							 | 
							pmatcollpw.x | 
							 |-  X = ( var1 ` R )  | 
						
						
							| 7 | 
							
								
							 | 
							pmatcollpw.t | 
							 |-  T = ( N matToPolyMat R )  | 
						
						
							| 8 | 
							
								
							 | 
							pmatcollpw3.a | 
							 |-  A = ( N Mat R )  | 
						
						
							| 9 | 
							
								
							 | 
							pmatcollpw3.d | 
							 |-  D = ( Base ` A )  | 
						
						
							| 10 | 
							
								
							 | 
							dmeq | 
							 |-  ( x = y -> dom x = dom y )  | 
						
						
							| 11 | 
							
								10
							 | 
							dmeqd | 
							 |-  ( x = y -> dom dom x = dom dom y )  | 
						
						
							| 12 | 
							
								
							 | 
							oveq | 
							 |-  ( x = y -> ( i x j ) = ( i y j ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							fveq2d | 
							 |-  ( x = y -> ( coe1 ` ( i x j ) ) = ( coe1 ` ( i y j ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							fveq1d | 
							 |-  ( x = y -> ( ( coe1 ` ( i x j ) ) ` k ) = ( ( coe1 ` ( i y j ) ) ` k ) )  | 
						
						
							| 15 | 
							
								11 11 14
							 | 
							mpoeq123dv | 
							 |-  ( x = y -> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) = ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` k ) ) )  | 
						
						
							| 16 | 
							
								
							 | 
							fveq2 | 
							 |-  ( k = l -> ( ( coe1 ` ( i y j ) ) ` k ) = ( ( coe1 ` ( i y j ) ) ` l ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							mpoeq3dv | 
							 |-  ( k = l -> ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` k ) ) = ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` l ) ) )  | 
						
						
							| 18 | 
							
								15 17
							 | 
							cbvmpov | 
							 |-  ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) = ( y e. B , l e. I |-> ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` l ) ) )  | 
						
						
							| 19 | 
							
								
							 | 
							dmexg | 
							 |-  ( y e. B -> dom y e. _V )  | 
						
						
							| 20 | 
							
								19
							 | 
							dmexd | 
							 |-  ( y e. B -> dom dom y e. _V )  | 
						
						
							| 21 | 
							
								20 20
							 | 
							jca | 
							 |-  ( y e. B -> ( dom dom y e. _V /\ dom dom y e. _V ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							ad2antrl | 
							 |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ ( y e. B /\ l e. I ) ) -> ( dom dom y e. _V /\ dom dom y e. _V ) )  | 
						
						
							| 23 | 
							
								
							 | 
							mpoexga | 
							 |-  ( ( dom dom y e. _V /\ dom dom y e. _V ) -> ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` l ) ) e. _V )  | 
						
						
							| 24 | 
							
								22 23
							 | 
							syl | 
							 |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ ( y e. B /\ l e. I ) ) -> ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` l ) ) e. _V )  | 
						
						
							| 25 | 
							
								24
							 | 
							ralrimivva | 
							 |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) -> A. y e. B A. l e. I ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` l ) ) e. _V )  | 
						
						
							| 26 | 
							
								
							 | 
							simprr | 
							 |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) -> I =/= (/) )  | 
						
						
							| 27 | 
							
								
							 | 
							nn0ex | 
							 |-  NN0 e. _V  | 
						
						
							| 28 | 
							
								27
							 | 
							ssex | 
							 |-  ( I C_ NN0 -> I e. _V )  | 
						
						
							| 29 | 
							
								28
							 | 
							ad2antrl | 
							 |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) -> I e. _V )  | 
						
						
							| 30 | 
							
								
							 | 
							simp3 | 
							 |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> M e. B )  | 
						
						
							| 31 | 
							
								30
							 | 
							adantr | 
							 |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) -> M e. B )  | 
						
						
							| 32 | 
							
								18 25 26 29 31
							 | 
							mpocurryvald | 
							 |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) -> ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) = ( l e. I |-> [_ M / y ]_ ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` l ) ) ) )  | 
						
						
							| 33 | 
							
								
							 | 
							fveq2 | 
							 |-  ( l = k -> ( ( coe1 ` ( i y j ) ) ` l ) = ( ( coe1 ` ( i y j ) ) ` k ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							mpoeq3dv | 
							 |-  ( l = k -> ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` l ) ) = ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` k ) ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							csbeq2dv | 
							 |-  ( l = k -> [_ M / y ]_ ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` l ) ) = [_ M / y ]_ ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` k ) ) )  | 
						
						
							| 36 | 
							
								
							 | 
							eqcom | 
							 |-  ( x = y <-> y = x )  | 
						
						
							| 37 | 
							
								
							 | 
							eqcom | 
							 |-  ( ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) = ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` k ) ) <-> ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` k ) ) = ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) )  | 
						
						
							| 38 | 
							
								15 36 37
							 | 
							3imtr3i | 
							 |-  ( y = x -> ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` k ) ) = ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							cbvcsbv | 
							 |-  [_ M / y ]_ ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` k ) ) = [_ M / x ]_ ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) )  | 
						
						
							| 40 | 
							
								35 39
							 | 
							eqtrdi | 
							 |-  ( l = k -> [_ M / y ]_ ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` l ) ) = [_ M / x ]_ ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							cbvmptv | 
							 |-  ( l e. I |-> [_ M / y ]_ ( i e. dom dom y , j e. dom dom y |-> ( ( coe1 ` ( i y j ) ) ` l ) ) ) = ( k e. I |-> [_ M / x ]_ ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) )  | 
						
						
							| 42 | 
							
								32 41
							 | 
							eqtrdi | 
							 |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) -> ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) = ( k e. I |-> [_ M / x ]_ ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) )  | 
						
						
							| 43 | 
							
								
							 | 
							dmeq | 
							 |-  ( x = M -> dom x = dom M )  | 
						
						
							| 44 | 
							
								43
							 | 
							dmeqd | 
							 |-  ( x = M -> dom dom x = dom dom M )  | 
						
						
							| 45 | 
							
								
							 | 
							oveq | 
							 |-  ( x = M -> ( i x j ) = ( i M j ) )  | 
						
						
							| 46 | 
							
								45
							 | 
							fveq2d | 
							 |-  ( x = M -> ( coe1 ` ( i x j ) ) = ( coe1 ` ( i M j ) ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							fveq1d | 
							 |-  ( x = M -> ( ( coe1 ` ( i x j ) ) ` k ) = ( ( coe1 ` ( i M j ) ) ` k ) )  | 
						
						
							| 48 | 
							
								44 44 47
							 | 
							mpoeq123dv | 
							 |-  ( x = M -> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) = ( i e. dom dom M , j e. dom dom M |-> ( ( coe1 ` ( i M j ) ) ` k ) ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							adantl | 
							 |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ x = M ) -> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) = ( i e. dom dom M , j e. dom dom M |-> ( ( coe1 ` ( i M j ) ) ` k ) ) )  | 
						
						
							| 50 | 
							
								30 49
							 | 
							csbied | 
							 |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> [_ M / x ]_ ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) = ( i e. dom dom M , j e. dom dom M |-> ( ( coe1 ` ( i M j ) ) ` k ) ) )  | 
						
						
							| 51 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` P ) = ( Base ` P )  | 
						
						
							| 52 | 
							
								2 51 3
							 | 
							matbas2i | 
							 |-  ( M e. B -> M e. ( ( Base ` P ) ^m ( N X. N ) ) )  | 
						
						
							| 53 | 
							
								
							 | 
							elmapi | 
							 |-  ( M e. ( ( Base ` P ) ^m ( N X. N ) ) -> M : ( N X. N ) --> ( Base ` P ) )  | 
						
						
							| 54 | 
							
								
							 | 
							fdm | 
							 |-  ( M : ( N X. N ) --> ( Base ` P ) -> dom M = ( N X. N ) )  | 
						
						
							| 55 | 
							
								54
							 | 
							dmeqd | 
							 |-  ( M : ( N X. N ) --> ( Base ` P ) -> dom dom M = dom ( N X. N ) )  | 
						
						
							| 56 | 
							
								
							 | 
							dmxpid | 
							 |-  dom ( N X. N ) = N  | 
						
						
							| 57 | 
							
								55 56
							 | 
							eqtr2di | 
							 |-  ( M : ( N X. N ) --> ( Base ` P ) -> N = dom dom M )  | 
						
						
							| 58 | 
							
								52 53 57
							 | 
							3syl | 
							 |-  ( M e. B -> N = dom dom M )  | 
						
						
							| 59 | 
							
								58
							 | 
							3ad2ant3 | 
							 |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> N = dom dom M )  | 
						
						
							| 60 | 
							
								59
							 | 
							adantr | 
							 |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ m = M ) -> N = dom dom M )  | 
						
						
							| 61 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ m = M ) -> m = M )  | 
						
						
							| 62 | 
							
								61
							 | 
							oveqd | 
							 |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ m = M ) -> ( i m j ) = ( i M j ) )  | 
						
						
							| 63 | 
							
								62
							 | 
							fveq2d | 
							 |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ m = M ) -> ( coe1 ` ( i m j ) ) = ( coe1 ` ( i M j ) ) )  | 
						
						
							| 64 | 
							
								63
							 | 
							fveq1d | 
							 |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ m = M ) -> ( ( coe1 ` ( i m j ) ) ` k ) = ( ( coe1 ` ( i M j ) ) ` k ) )  | 
						
						
							| 65 | 
							
								60 60 64
							 | 
							mpoeq123dv | 
							 |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ m = M ) -> ( i e. N , j e. N |-> ( ( coe1 ` ( i m j ) ) ` k ) ) = ( i e. dom dom M , j e. dom dom M |-> ( ( coe1 ` ( i M j ) ) ` k ) ) )  | 
						
						
							| 66 | 
							
								30 65
							 | 
							csbied | 
							 |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> [_ M / m ]_ ( i e. N , j e. N |-> ( ( coe1 ` ( i m j ) ) ` k ) ) = ( i e. dom dom M , j e. dom dom M |-> ( ( coe1 ` ( i M j ) ) ` k ) ) )  | 
						
						
							| 67 | 
							
								50 66
							 | 
							eqtr4d | 
							 |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> [_ M / x ]_ ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) = [_ M / m ]_ ( i e. N , j e. N |-> ( ( coe1 ` ( i m j ) ) ` k ) ) )  | 
						
						
							| 68 | 
							
								67
							 | 
							adantr | 
							 |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) -> [_ M / x ]_ ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) = [_ M / m ]_ ( i e. N , j e. N |-> ( ( coe1 ` ( i m j ) ) ` k ) ) )  | 
						
						
							| 69 | 
							
								68
							 | 
							mpteq2dv | 
							 |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) -> ( k e. I |-> [_ M / x ]_ ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) = ( k e. I |-> [_ M / m ]_ ( i e. N , j e. N |-> ( ( coe1 ` ( i m j ) ) ` k ) ) ) )  | 
						
						
							| 70 | 
							
								42 69
							 | 
							eqtrd | 
							 |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) -> ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) = ( k e. I |-> [_ M / m ]_ ( i e. N , j e. N |-> ( ( coe1 ` ( i m j ) ) ` k ) ) ) )  | 
						
						
							| 71 | 
							
								
							 | 
							oveq | 
							 |-  ( m = M -> ( i m j ) = ( i M j ) )  | 
						
						
							| 72 | 
							
								71
							 | 
							adantl | 
							 |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ m = M ) -> ( i m j ) = ( i M j ) )  | 
						
						
							| 73 | 
							
								72
							 | 
							fveq2d | 
							 |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ m = M ) -> ( coe1 ` ( i m j ) ) = ( coe1 ` ( i M j ) ) )  | 
						
						
							| 74 | 
							
								73
							 | 
							fveq1d | 
							 |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ m = M ) -> ( ( coe1 ` ( i m j ) ) ` k ) = ( ( coe1 ` ( i M j ) ) ` k ) )  | 
						
						
							| 75 | 
							
								74
							 | 
							mpoeq3dv | 
							 |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ m = M ) -> ( i e. N , j e. N |-> ( ( coe1 ` ( i m j ) ) ` k ) ) = ( i e. N , j e. N |-> ( ( coe1 ` ( i M j ) ) ` k ) ) )  | 
						
						
							| 76 | 
							
								30 75
							 | 
							csbied | 
							 |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> [_ M / m ]_ ( i e. N , j e. N |-> ( ( coe1 ` ( i m j ) ) ` k ) ) = ( i e. N , j e. N |-> ( ( coe1 ` ( i M j ) ) ` k ) ) )  | 
						
						
							| 77 | 
							
								76
							 | 
							ad2antrr | 
							 |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ k e. I ) -> [_ M / m ]_ ( i e. N , j e. N |-> ( ( coe1 ` ( i m j ) ) ` k ) ) = ( i e. N , j e. N |-> ( ( coe1 ` ( i M j ) ) ` k ) ) )  | 
						
						
							| 78 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` R ) = ( Base ` R )  | 
						
						
							| 79 | 
							
								
							 | 
							simpll1 | 
							 |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ k e. I ) -> N e. Fin )  | 
						
						
							| 80 | 
							
								
							 | 
							simpll2 | 
							 |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ k e. I ) -> R e. CRing )  | 
						
						
							| 81 | 
							
								
							 | 
							simp2 | 
							 |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ k e. I ) /\ i e. N /\ j e. N ) -> i e. N )  | 
						
						
							| 82 | 
							
								
							 | 
							simp3 | 
							 |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ k e. I ) /\ i e. N /\ j e. N ) -> j e. N )  | 
						
						
							| 83 | 
							
								31
							 | 
							adantr | 
							 |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ k e. I ) -> M e. B )  | 
						
						
							| 84 | 
							
								83
							 | 
							3ad2ant1 | 
							 |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ k e. I ) /\ i e. N /\ j e. N ) -> M e. B )  | 
						
						
							| 85 | 
							
								2 51 3 81 82 84
							 | 
							matecld | 
							 |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ k e. I ) /\ i e. N /\ j e. N ) -> ( i M j ) e. ( Base ` P ) )  | 
						
						
							| 86 | 
							
								
							 | 
							ssel | 
							 |-  ( I C_ NN0 -> ( k e. I -> k e. NN0 ) )  | 
						
						
							| 87 | 
							
								86
							 | 
							ad2antrl | 
							 |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) -> ( k e. I -> k e. NN0 ) )  | 
						
						
							| 88 | 
							
								87
							 | 
							imp | 
							 |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ k e. I ) -> k e. NN0 )  | 
						
						
							| 89 | 
							
								88
							 | 
							3ad2ant1 | 
							 |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ k e. I ) /\ i e. N /\ j e. N ) -> k e. NN0 )  | 
						
						
							| 90 | 
							
								
							 | 
							eqid | 
							 |-  ( coe1 ` ( i M j ) ) = ( coe1 ` ( i M j ) )  | 
						
						
							| 91 | 
							
								90 51 1 78
							 | 
							coe1fvalcl | 
							 |-  ( ( ( i M j ) e. ( Base ` P ) /\ k e. NN0 ) -> ( ( coe1 ` ( i M j ) ) ` k ) e. ( Base ` R ) )  | 
						
						
							| 92 | 
							
								85 89 91
							 | 
							syl2anc | 
							 |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ k e. I ) /\ i e. N /\ j e. N ) -> ( ( coe1 ` ( i M j ) ) ` k ) e. ( Base ` R ) )  | 
						
						
							| 93 | 
							
								8 78 9 79 80 92
							 | 
							matbas2d | 
							 |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ k e. I ) -> ( i e. N , j e. N |-> ( ( coe1 ` ( i M j ) ) ` k ) ) e. D )  | 
						
						
							| 94 | 
							
								77 93
							 | 
							eqeltrd | 
							 |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ k e. I ) -> [_ M / m ]_ ( i e. N , j e. N |-> ( ( coe1 ` ( i m j ) ) ` k ) ) e. D )  | 
						
						
							| 95 | 
							
								94
							 | 
							fmpttd | 
							 |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) -> ( k e. I |-> [_ M / m ]_ ( i e. N , j e. N |-> ( ( coe1 ` ( i m j ) ) ` k ) ) ) : I --> D )  | 
						
						
							| 96 | 
							
								9
							 | 
							fvexi | 
							 |-  D e. _V  | 
						
						
							| 97 | 
							
								96
							 | 
							a1i | 
							 |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> D e. _V )  | 
						
						
							| 98 | 
							
								28
							 | 
							adantr | 
							 |-  ( ( I C_ NN0 /\ I =/= (/) ) -> I e. _V )  | 
						
						
							| 99 | 
							
								
							 | 
							elmapg | 
							 |-  ( ( D e. _V /\ I e. _V ) -> ( ( k e. I |-> [_ M / m ]_ ( i e. N , j e. N |-> ( ( coe1 ` ( i m j ) ) ` k ) ) ) e. ( D ^m I ) <-> ( k e. I |-> [_ M / m ]_ ( i e. N , j e. N |-> ( ( coe1 ` ( i m j ) ) ` k ) ) ) : I --> D ) )  | 
						
						
							| 100 | 
							
								97 98 99
							 | 
							syl2an | 
							 |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) -> ( ( k e. I |-> [_ M / m ]_ ( i e. N , j e. N |-> ( ( coe1 ` ( i m j ) ) ` k ) ) ) e. ( D ^m I ) <-> ( k e. I |-> [_ M / m ]_ ( i e. N , j e. N |-> ( ( coe1 ` ( i m j ) ) ` k ) ) ) : I --> D ) )  | 
						
						
							| 101 | 
							
								95 100
							 | 
							mpbird | 
							 |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) -> ( k e. I |-> [_ M / m ]_ ( i e. N , j e. N |-> ( ( coe1 ` ( i m j ) ) ` k ) ) ) e. ( D ^m I ) )  | 
						
						
							| 102 | 
							
								70 101
							 | 
							eqeltrd | 
							 |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) -> ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) e. ( D ^m I ) )  | 
						
						
							| 103 | 
							
								
							 | 
							fveq1 | 
							 |-  ( f = ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) -> ( f ` n ) = ( ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ` n ) )  | 
						
						
							| 104 | 
							
								103
							 | 
							adantl | 
							 |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ f = ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ) -> ( f ` n ) = ( ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ` n ) )  | 
						
						
							| 105 | 
							
								104
							 | 
							adantr | 
							 |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ f = ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ) /\ n e. I ) -> ( f ` n ) = ( ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ` n ) )  | 
						
						
							| 106 | 
							
								
							 | 
							eqid | 
							 |-  ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) = ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) )  | 
						
						
							| 107 | 
							
								
							 | 
							dmexg | 
							 |-  ( x e. B -> dom x e. _V )  | 
						
						
							| 108 | 
							
								107
							 | 
							dmexd | 
							 |-  ( x e. B -> dom dom x e. _V )  | 
						
						
							| 109 | 
							
								108 108
							 | 
							jca | 
							 |-  ( x e. B -> ( dom dom x e. _V /\ dom dom x e. _V ) )  | 
						
						
							| 110 | 
							
								109
							 | 
							ad2antrl | 
							 |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ n e. I ) /\ ( x e. B /\ k e. I ) ) -> ( dom dom x e. _V /\ dom dom x e. _V ) )  | 
						
						
							| 111 | 
							
								
							 | 
							mpoexga | 
							 |-  ( ( dom dom x e. _V /\ dom dom x e. _V ) -> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) e. _V )  | 
						
						
							| 112 | 
							
								110 111
							 | 
							syl | 
							 |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ n e. I ) /\ ( x e. B /\ k e. I ) ) -> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) e. _V )  | 
						
						
							| 113 | 
							
								112
							 | 
							ralrimivva | 
							 |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ n e. I ) -> A. x e. B A. k e. I ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) e. _V )  | 
						
						
							| 114 | 
							
								29
							 | 
							adantr | 
							 |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ n e. I ) -> I e. _V )  | 
						
						
							| 115 | 
							
								31
							 | 
							adantr | 
							 |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ n e. I ) -> M e. B )  | 
						
						
							| 116 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ n e. I ) -> n e. I )  | 
						
						
							| 117 | 
							
								106 113 114 115 116
							 | 
							fvmpocurryd | 
							 |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ n e. I ) -> ( ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ` n ) = ( M ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) n ) )  | 
						
						
							| 118 | 
							
								
							 | 
							df-decpmat | 
							 |-  decompPMat = ( x e. _V , k e. NN0 |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) )  | 
						
						
							| 119 | 
							
								118
							 | 
							reseq1i | 
							 |-  ( decompPMat |` ( B X. I ) ) = ( ( x e. _V , k e. NN0 |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) |` ( B X. I ) )  | 
						
						
							| 120 | 
							
								
							 | 
							ssv | 
							 |-  B C_ _V  | 
						
						
							| 121 | 
							
								120
							 | 
							a1i | 
							 |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> B C_ _V )  | 
						
						
							| 122 | 
							
								
							 | 
							simpl | 
							 |-  ( ( I C_ NN0 /\ I =/= (/) ) -> I C_ NN0 )  | 
						
						
							| 123 | 
							
								121 122
							 | 
							anim12i | 
							 |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) -> ( B C_ _V /\ I C_ NN0 ) )  | 
						
						
							| 124 | 
							
								123
							 | 
							adantr | 
							 |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ n e. I ) -> ( B C_ _V /\ I C_ NN0 ) )  | 
						
						
							| 125 | 
							
								
							 | 
							resmpo | 
							 |-  ( ( B C_ _V /\ I C_ NN0 ) -> ( ( x e. _V , k e. NN0 |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) |` ( B X. I ) ) = ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) )  | 
						
						
							| 126 | 
							
								124 125
							 | 
							syl | 
							 |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ n e. I ) -> ( ( x e. _V , k e. NN0 |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) |` ( B X. I ) ) = ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) )  | 
						
						
							| 127 | 
							
								119 126
							 | 
							eqtr2id | 
							 |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ n e. I ) -> ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) = ( decompPMat |` ( B X. I ) ) )  | 
						
						
							| 128 | 
							
								127
							 | 
							oveqd | 
							 |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ n e. I ) -> ( M ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) n ) = ( M ( decompPMat |` ( B X. I ) ) n ) )  | 
						
						
							| 129 | 
							
								117 128
							 | 
							eqtrd | 
							 |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ n e. I ) -> ( ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ` n ) = ( M ( decompPMat |` ( B X. I ) ) n ) )  | 
						
						
							| 130 | 
							
								129
							 | 
							adantlr | 
							 |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ f = ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ) /\ n e. I ) -> ( ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ` n ) = ( M ( decompPMat |` ( B X. I ) ) n ) )  | 
						
						
							| 131 | 
							
								105 130
							 | 
							eqtrd | 
							 |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ f = ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ) /\ n e. I ) -> ( f ` n ) = ( M ( decompPMat |` ( B X. I ) ) n ) )  | 
						
						
							| 132 | 
							
								131
							 | 
							fveq2d | 
							 |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ f = ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ) /\ n e. I ) -> ( T ` ( f ` n ) ) = ( T ` ( M ( decompPMat |` ( B X. I ) ) n ) ) )  | 
						
						
							| 133 | 
							
								30
							 | 
							ad2antrr | 
							 |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ f = ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ) -> M e. B )  | 
						
						
							| 134 | 
							
								
							 | 
							ovres | 
							 |-  ( ( M e. B /\ n e. I ) -> ( M ( decompPMat |` ( B X. I ) ) n ) = ( M decompPMat n ) )  | 
						
						
							| 135 | 
							
								133 134
							 | 
							sylan | 
							 |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ f = ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ) /\ n e. I ) -> ( M ( decompPMat |` ( B X. I ) ) n ) = ( M decompPMat n ) )  | 
						
						
							| 136 | 
							
								135
							 | 
							fveq2d | 
							 |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ f = ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ) /\ n e. I ) -> ( T ` ( M ( decompPMat |` ( B X. I ) ) n ) ) = ( T ` ( M decompPMat n ) ) )  | 
						
						
							| 137 | 
							
								132 136
							 | 
							eqtrd | 
							 |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ f = ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ) /\ n e. I ) -> ( T ` ( f ` n ) ) = ( T ` ( M decompPMat n ) ) )  | 
						
						
							| 138 | 
							
								137
							 | 
							oveq2d | 
							 |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ f = ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ) /\ n e. I ) -> ( ( n .^ X ) .* ( T ` ( f ` n ) ) ) = ( ( n .^ X ) .* ( T ` ( M decompPMat n ) ) ) )  | 
						
						
							| 139 | 
							
								138
							 | 
							mpteq2dva | 
							 |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ f = ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ) -> ( n e. I |-> ( ( n .^ X ) .* ( T ` ( f ` n ) ) ) ) = ( n e. I |-> ( ( n .^ X ) .* ( T ` ( M decompPMat n ) ) ) ) )  | 
						
						
							| 140 | 
							
								139
							 | 
							oveq2d | 
							 |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ f = ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ) -> ( C gsum ( n e. I |-> ( ( n .^ X ) .* ( T ` ( f ` n ) ) ) ) ) = ( C gsum ( n e. I |-> ( ( n .^ X ) .* ( T ` ( M decompPMat n ) ) ) ) ) )  | 
						
						
							| 141 | 
							
								140
							 | 
							eqeq2d | 
							 |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) /\ f = ( curry ( x e. B , k e. I |-> ( i e. dom dom x , j e. dom dom x |-> ( ( coe1 ` ( i x j ) ) ` k ) ) ) ` M ) ) -> ( M = ( C gsum ( n e. I |-> ( ( n .^ X ) .* ( T ` ( f ` n ) ) ) ) ) <-> M = ( C gsum ( n e. I |-> ( ( n .^ X ) .* ( T ` ( M decompPMat n ) ) ) ) ) ) )  | 
						
						
							| 142 | 
							
								102 141
							 | 
							rspcedv | 
							 |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( I C_ NN0 /\ I =/= (/) ) ) -> ( M = ( C gsum ( n e. I |-> ( ( n .^ X ) .* ( T ` ( M decompPMat n ) ) ) ) ) -> E. f e. ( D ^m I ) M = ( C gsum ( n e. I |-> ( ( n .^ X ) .* ( T ` ( f ` n ) ) ) ) ) ) )  |