| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmatcollpw.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
pmatcollpw.c |
|- C = ( N Mat P ) |
| 3 |
|
pmatcollpw.b |
|- B = ( Base ` C ) |
| 4 |
|
pmatcollpw.m |
|- .* = ( .s ` C ) |
| 5 |
|
pmatcollpw.e |
|- .^ = ( .g ` ( mulGrp ` P ) ) |
| 6 |
|
pmatcollpw.x |
|- X = ( var1 ` R ) |
| 7 |
|
pmatcollpw.t |
|- T = ( N matToPolyMat R ) |
| 8 |
1
|
ply1assa |
|- ( R e. CRing -> P e. AssAlg ) |
| 9 |
8
|
3ad2ant2 |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> P e. AssAlg ) |
| 10 |
9
|
adantr |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) -> P e. AssAlg ) |
| 11 |
10
|
3ad2ant1 |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) /\ a e. N /\ b e. N ) -> P e. AssAlg ) |
| 12 |
|
eqid |
|- ( N Mat R ) = ( N Mat R ) |
| 13 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 14 |
|
eqid |
|- ( Base ` ( N Mat R ) ) = ( Base ` ( N Mat R ) ) |
| 15 |
|
simp2 |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) /\ a e. N /\ b e. N ) -> a e. N ) |
| 16 |
|
simp3 |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) /\ a e. N /\ b e. N ) -> b e. N ) |
| 17 |
|
simp2 |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> R e. CRing ) |
| 18 |
17
|
adantr |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) -> R e. CRing ) |
| 19 |
|
simp3 |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> M e. B ) |
| 20 |
19
|
adantr |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) -> M e. B ) |
| 21 |
|
simpr |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) -> n e. NN0 ) |
| 22 |
1 2 3 12 14
|
decpmatcl |
|- ( ( R e. CRing /\ M e. B /\ n e. NN0 ) -> ( M decompPMat n ) e. ( Base ` ( N Mat R ) ) ) |
| 23 |
18 20 21 22
|
syl3anc |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) -> ( M decompPMat n ) e. ( Base ` ( N Mat R ) ) ) |
| 24 |
23
|
3ad2ant1 |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) /\ a e. N /\ b e. N ) -> ( M decompPMat n ) e. ( Base ` ( N Mat R ) ) ) |
| 25 |
12 13 14 15 16 24
|
matecld |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) /\ a e. N /\ b e. N ) -> ( a ( M decompPMat n ) b ) e. ( Base ` R ) ) |
| 26 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
| 27 |
26
|
3ad2ant2 |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> R e. Ring ) |
| 28 |
1
|
ply1sca |
|- ( R e. Ring -> R = ( Scalar ` P ) ) |
| 29 |
27 28
|
syl |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> R = ( Scalar ` P ) ) |
| 30 |
29
|
eqcomd |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( Scalar ` P ) = R ) |
| 31 |
30
|
fveq2d |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( Base ` ( Scalar ` P ) ) = ( Base ` R ) ) |
| 32 |
31
|
eleq2d |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( ( a ( M decompPMat n ) b ) e. ( Base ` ( Scalar ` P ) ) <-> ( a ( M decompPMat n ) b ) e. ( Base ` R ) ) ) |
| 33 |
32
|
adantr |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) -> ( ( a ( M decompPMat n ) b ) e. ( Base ` ( Scalar ` P ) ) <-> ( a ( M decompPMat n ) b ) e. ( Base ` R ) ) ) |
| 34 |
33
|
3ad2ant1 |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) /\ a e. N /\ b e. N ) -> ( ( a ( M decompPMat n ) b ) e. ( Base ` ( Scalar ` P ) ) <-> ( a ( M decompPMat n ) b ) e. ( Base ` R ) ) ) |
| 35 |
25 34
|
mpbird |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) /\ a e. N /\ b e. N ) -> ( a ( M decompPMat n ) b ) e. ( Base ` ( Scalar ` P ) ) ) |
| 36 |
|
eqid |
|- ( mulGrp ` P ) = ( mulGrp ` P ) |
| 37 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
| 38 |
1 6 36 5 37
|
ply1moncl |
|- ( ( R e. Ring /\ n e. NN0 ) -> ( n .^ X ) e. ( Base ` P ) ) |
| 39 |
27 38
|
sylan |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) -> ( n .^ X ) e. ( Base ` P ) ) |
| 40 |
39
|
3ad2ant1 |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) /\ a e. N /\ b e. N ) -> ( n .^ X ) e. ( Base ` P ) ) |
| 41 |
|
eqid |
|- ( algSc ` P ) = ( algSc ` P ) |
| 42 |
|
eqid |
|- ( Scalar ` P ) = ( Scalar ` P ) |
| 43 |
|
eqid |
|- ( Base ` ( Scalar ` P ) ) = ( Base ` ( Scalar ` P ) ) |
| 44 |
|
eqid |
|- ( .r ` P ) = ( .r ` P ) |
| 45 |
|
eqid |
|- ( .s ` P ) = ( .s ` P ) |
| 46 |
41 42 43 37 44 45
|
asclmul2 |
|- ( ( P e. AssAlg /\ ( a ( M decompPMat n ) b ) e. ( Base ` ( Scalar ` P ) ) /\ ( n .^ X ) e. ( Base ` P ) ) -> ( ( n .^ X ) ( .r ` P ) ( ( algSc ` P ) ` ( a ( M decompPMat n ) b ) ) ) = ( ( a ( M decompPMat n ) b ) ( .s ` P ) ( n .^ X ) ) ) |
| 47 |
11 35 40 46
|
syl3anc |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) /\ a e. N /\ b e. N ) -> ( ( n .^ X ) ( .r ` P ) ( ( algSc ` P ) ` ( a ( M decompPMat n ) b ) ) ) = ( ( a ( M decompPMat n ) b ) ( .s ` P ) ( n .^ X ) ) ) |
| 48 |
|
eqidd |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) /\ a e. N /\ b e. N ) -> ( i e. N , j e. N |-> ( ( algSc ` P ) ` ( i ( M decompPMat n ) j ) ) ) = ( i e. N , j e. N |-> ( ( algSc ` P ) ` ( i ( M decompPMat n ) j ) ) ) ) |
| 49 |
|
oveq12 |
|- ( ( i = a /\ j = b ) -> ( i ( M decompPMat n ) j ) = ( a ( M decompPMat n ) b ) ) |
| 50 |
49
|
fveq2d |
|- ( ( i = a /\ j = b ) -> ( ( algSc ` P ) ` ( i ( M decompPMat n ) j ) ) = ( ( algSc ` P ) ` ( a ( M decompPMat n ) b ) ) ) |
| 51 |
50
|
adantl |
|- ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) /\ a e. N /\ b e. N ) /\ ( i = a /\ j = b ) ) -> ( ( algSc ` P ) ` ( i ( M decompPMat n ) j ) ) = ( ( algSc ` P ) ` ( a ( M decompPMat n ) b ) ) ) |
| 52 |
|
fvexd |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) /\ a e. N /\ b e. N ) -> ( ( algSc ` P ) ` ( a ( M decompPMat n ) b ) ) e. _V ) |
| 53 |
48 51 15 16 52
|
ovmpod |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) /\ a e. N /\ b e. N ) -> ( a ( i e. N , j e. N |-> ( ( algSc ` P ) ` ( i ( M decompPMat n ) j ) ) ) b ) = ( ( algSc ` P ) ` ( a ( M decompPMat n ) b ) ) ) |
| 54 |
53
|
eqcomd |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) /\ a e. N /\ b e. N ) -> ( ( algSc ` P ) ` ( a ( M decompPMat n ) b ) ) = ( a ( i e. N , j e. N |-> ( ( algSc ` P ) ` ( i ( M decompPMat n ) j ) ) ) b ) ) |
| 55 |
54
|
oveq2d |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) /\ a e. N /\ b e. N ) -> ( ( n .^ X ) ( .r ` P ) ( ( algSc ` P ) ` ( a ( M decompPMat n ) b ) ) ) = ( ( n .^ X ) ( .r ` P ) ( a ( i e. N , j e. N |-> ( ( algSc ` P ) ` ( i ( M decompPMat n ) j ) ) ) b ) ) ) |
| 56 |
47 55
|
eqtr3d |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) /\ a e. N /\ b e. N ) -> ( ( a ( M decompPMat n ) b ) ( .s ` P ) ( n .^ X ) ) = ( ( n .^ X ) ( .r ` P ) ( a ( i e. N , j e. N |-> ( ( algSc ` P ) ` ( i ( M decompPMat n ) j ) ) ) b ) ) ) |
| 57 |
1
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
| 58 |
26 57
|
syl |
|- ( R e. CRing -> P e. Ring ) |
| 59 |
58
|
3ad2ant2 |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> P e. Ring ) |
| 60 |
59
|
adantr |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) -> P e. Ring ) |
| 61 |
60
|
3ad2ant1 |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) /\ a e. N /\ b e. N ) -> P e. Ring ) |
| 62 |
|
simpl1 |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) -> N e. Fin ) |
| 63 |
18 26
|
syl |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) -> R e. Ring ) |
| 64 |
63
|
3ad2ant1 |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) /\ i e. N /\ j e. N ) -> R e. Ring ) |
| 65 |
|
simp2 |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) /\ i e. N /\ j e. N ) -> i e. N ) |
| 66 |
|
simp3 |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) /\ i e. N /\ j e. N ) -> j e. N ) |
| 67 |
23
|
3ad2ant1 |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) /\ i e. N /\ j e. N ) -> ( M decompPMat n ) e. ( Base ` ( N Mat R ) ) ) |
| 68 |
12 13 14 65 66 67
|
matecld |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) /\ i e. N /\ j e. N ) -> ( i ( M decompPMat n ) j ) e. ( Base ` R ) ) |
| 69 |
1 41 13 37
|
ply1sclcl |
|- ( ( R e. Ring /\ ( i ( M decompPMat n ) j ) e. ( Base ` R ) ) -> ( ( algSc ` P ) ` ( i ( M decompPMat n ) j ) ) e. ( Base ` P ) ) |
| 70 |
64 68 69
|
syl2anc |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) /\ i e. N /\ j e. N ) -> ( ( algSc ` P ) ` ( i ( M decompPMat n ) j ) ) e. ( Base ` P ) ) |
| 71 |
2 37 3 62 60 70
|
matbas2d |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) -> ( i e. N , j e. N |-> ( ( algSc ` P ) ` ( i ( M decompPMat n ) j ) ) ) e. B ) |
| 72 |
39 71
|
jca |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) -> ( ( n .^ X ) e. ( Base ` P ) /\ ( i e. N , j e. N |-> ( ( algSc ` P ) ` ( i ( M decompPMat n ) j ) ) ) e. B ) ) |
| 73 |
72
|
3ad2ant1 |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) /\ a e. N /\ b e. N ) -> ( ( n .^ X ) e. ( Base ` P ) /\ ( i e. N , j e. N |-> ( ( algSc ` P ) ` ( i ( M decompPMat n ) j ) ) ) e. B ) ) |
| 74 |
15 16
|
jca |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) /\ a e. N /\ b e. N ) -> ( a e. N /\ b e. N ) ) |
| 75 |
2 3 37 4 44
|
matvscacell |
|- ( ( P e. Ring /\ ( ( n .^ X ) e. ( Base ` P ) /\ ( i e. N , j e. N |-> ( ( algSc ` P ) ` ( i ( M decompPMat n ) j ) ) ) e. B ) /\ ( a e. N /\ b e. N ) ) -> ( a ( ( n .^ X ) .* ( i e. N , j e. N |-> ( ( algSc ` P ) ` ( i ( M decompPMat n ) j ) ) ) ) b ) = ( ( n .^ X ) ( .r ` P ) ( a ( i e. N , j e. N |-> ( ( algSc ` P ) ` ( i ( M decompPMat n ) j ) ) ) b ) ) ) |
| 76 |
61 73 74 75
|
syl3anc |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) /\ a e. N /\ b e. N ) -> ( a ( ( n .^ X ) .* ( i e. N , j e. N |-> ( ( algSc ` P ) ` ( i ( M decompPMat n ) j ) ) ) ) b ) = ( ( n .^ X ) ( .r ` P ) ( a ( i e. N , j e. N |-> ( ( algSc ` P ) ` ( i ( M decompPMat n ) j ) ) ) b ) ) ) |
| 77 |
27
|
adantr |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) -> R e. Ring ) |
| 78 |
7 12 14 1 41
|
mat2pmatval |
|- ( ( N e. Fin /\ R e. Ring /\ ( M decompPMat n ) e. ( Base ` ( N Mat R ) ) ) -> ( T ` ( M decompPMat n ) ) = ( i e. N , j e. N |-> ( ( algSc ` P ) ` ( i ( M decompPMat n ) j ) ) ) ) |
| 79 |
62 77 23 78
|
syl3anc |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) -> ( T ` ( M decompPMat n ) ) = ( i e. N , j e. N |-> ( ( algSc ` P ) ` ( i ( M decompPMat n ) j ) ) ) ) |
| 80 |
79
|
eqcomd |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) -> ( i e. N , j e. N |-> ( ( algSc ` P ) ` ( i ( M decompPMat n ) j ) ) ) = ( T ` ( M decompPMat n ) ) ) |
| 81 |
80
|
oveq2d |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) -> ( ( n .^ X ) .* ( i e. N , j e. N |-> ( ( algSc ` P ) ` ( i ( M decompPMat n ) j ) ) ) ) = ( ( n .^ X ) .* ( T ` ( M decompPMat n ) ) ) ) |
| 82 |
81
|
oveqd |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) -> ( a ( ( n .^ X ) .* ( i e. N , j e. N |-> ( ( algSc ` P ) ` ( i ( M decompPMat n ) j ) ) ) ) b ) = ( a ( ( n .^ X ) .* ( T ` ( M decompPMat n ) ) ) b ) ) |
| 83 |
82
|
3ad2ant1 |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) /\ a e. N /\ b e. N ) -> ( a ( ( n .^ X ) .* ( i e. N , j e. N |-> ( ( algSc ` P ) ` ( i ( M decompPMat n ) j ) ) ) ) b ) = ( a ( ( n .^ X ) .* ( T ` ( M decompPMat n ) ) ) b ) ) |
| 84 |
56 76 83
|
3eqtr2d |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) /\ a e. N /\ b e. N ) -> ( ( a ( M decompPMat n ) b ) ( .s ` P ) ( n .^ X ) ) = ( a ( ( n .^ X ) .* ( T ` ( M decompPMat n ) ) ) b ) ) |