Metamath Proof Explorer


Theorem pmatring

Description: The set of polynomial matrices over a ring is a ring. (Contributed by AV, 6-Nov-2019)

Ref Expression
Hypotheses pmatring.p
|- P = ( Poly1 ` R )
pmatring.c
|- C = ( N Mat P )
Assertion pmatring
|- ( ( N e. Fin /\ R e. Ring ) -> C e. Ring )

Proof

Step Hyp Ref Expression
1 pmatring.p
 |-  P = ( Poly1 ` R )
2 pmatring.c
 |-  C = ( N Mat P )
3 1 ply1ring
 |-  ( R e. Ring -> P e. Ring )
4 2 matring
 |-  ( ( N e. Fin /\ P e. Ring ) -> C e. Ring )
5 3 4 sylan2
 |-  ( ( N e. Fin /\ R e. Ring ) -> C e. Ring )