Description: The class of all partial functions from one set to another is a set. (Contributed by NM, 15-Nov-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pmex | |- ( ( A e. C /\ B e. D ) -> { f | ( Fun f /\ f C_ ( A X. B ) ) } e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom | |- ( ( Fun f /\ f C_ ( A X. B ) ) <-> ( f C_ ( A X. B ) /\ Fun f ) ) |
|
| 2 | 1 | abbii | |- { f | ( Fun f /\ f C_ ( A X. B ) ) } = { f | ( f C_ ( A X. B ) /\ Fun f ) } |
| 3 | xpexg | |- ( ( A e. C /\ B e. D ) -> ( A X. B ) e. _V ) |
|
| 4 | abssexg | |- ( ( A X. B ) e. _V -> { f | ( f C_ ( A X. B ) /\ Fun f ) } e. _V ) |
|
| 5 | 3 4 | syl | |- ( ( A e. C /\ B e. D ) -> { f | ( f C_ ( A X. B ) /\ Fun f ) } e. _V ) |
| 6 | 2 5 | eqeltrid | |- ( ( A e. C /\ B e. D ) -> { f | ( Fun f /\ f C_ ( A X. B ) ) } e. _V ) |