Description: A partial function is a function. (Contributed by Mario Carneiro, 30-Jan-2014) (Revised by Mario Carneiro, 26-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pmfun | |- ( F e. ( A ^pm B ) -> Fun F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpmi | |- ( F e. ( A ^pm B ) -> ( F : dom F --> A /\ dom F C_ B ) ) |
|
| 2 | ffun | |- ( F : dom F --> A -> Fun F ) |
|
| 3 | 2 | adantr | |- ( ( F : dom F --> A /\ dom F C_ B ) -> Fun F ) |
| 4 | 1 3 | syl | |- ( F e. ( A ^pm B ) -> Fun F ) |