Metamath Proof Explorer


Theorem pmmpric

Description: The ring of polynomial matrices over a ring is isomorphic to the ring of polynomials over matrices of the same dimension over the same ring. (Contributed by AV, 30-Dec-2019)

Ref Expression
Hypotheses pmmpric.p
|- P = ( Poly1 ` R )
pmmpric.c
|- C = ( N Mat P )
pmmpric.a
|- A = ( N Mat R )
pmmpric.q
|- Q = ( Poly1 ` A )
Assertion pmmpric
|- ( ( N e. Fin /\ R e. Ring ) -> C ~=r Q )

Proof

Step Hyp Ref Expression
1 pmmpric.p
 |-  P = ( Poly1 ` R )
2 pmmpric.c
 |-  C = ( N Mat P )
3 pmmpric.a
 |-  A = ( N Mat R )
4 pmmpric.q
 |-  Q = ( Poly1 ` A )
5 eqid
 |-  ( N pMatToMatPoly R ) = ( N pMatToMatPoly R )
6 1 2 3 4 5 pm2mprngiso
 |-  ( ( N e. Fin /\ R e. Ring ) -> ( N pMatToMatPoly R ) e. ( C RingIso Q ) )
7 6 ne0d
 |-  ( ( N e. Fin /\ R e. Ring ) -> ( C RingIso Q ) =/= (/) )
8 brric
 |-  ( C ~=r Q <-> ( C RingIso Q ) =/= (/) )
9 7 8 sylibr
 |-  ( ( N e. Fin /\ R e. Ring ) -> C ~=r Q )