Step |
Hyp |
Ref |
Expression |
1 |
|
pmod.a |
|- A = ( Atoms ` K ) |
2 |
|
pmod.s |
|- S = ( PSubSp ` K ) |
3 |
|
pmod.p |
|- .+ = ( +P ` K ) |
4 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
5 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
6 |
4 5 1 2 3
|
pmodlem2 |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) -> ( ( X .+ Y ) i^i Z ) C_ ( X .+ ( Y i^i Z ) ) ) |
7 |
6
|
3expa |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) /\ X C_ Z ) -> ( ( X .+ Y ) i^i Z ) C_ ( X .+ ( Y i^i Z ) ) ) |
8 |
|
inss1 |
|- ( Y i^i Z ) C_ Y |
9 |
|
simpll |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) /\ X C_ Z ) -> K e. HL ) |
10 |
|
simplr2 |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) /\ X C_ Z ) -> Y C_ A ) |
11 |
|
simplr1 |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) /\ X C_ Z ) -> X C_ A ) |
12 |
1 3
|
paddss2 |
|- ( ( K e. HL /\ Y C_ A /\ X C_ A ) -> ( ( Y i^i Z ) C_ Y -> ( X .+ ( Y i^i Z ) ) C_ ( X .+ Y ) ) ) |
13 |
9 10 11 12
|
syl3anc |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) /\ X C_ Z ) -> ( ( Y i^i Z ) C_ Y -> ( X .+ ( Y i^i Z ) ) C_ ( X .+ Y ) ) ) |
14 |
8 13
|
mpi |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) /\ X C_ Z ) -> ( X .+ ( Y i^i Z ) ) C_ ( X .+ Y ) ) |
15 |
|
simpl |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) -> K e. HL ) |
16 |
1 2
|
psubssat |
|- ( ( K e. HL /\ Z e. S ) -> Z C_ A ) |
17 |
16
|
3ad2antr3 |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) -> Z C_ A ) |
18 |
|
simpr2 |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) -> Y C_ A ) |
19 |
|
ssinss1 |
|- ( Y C_ A -> ( Y i^i Z ) C_ A ) |
20 |
18 19
|
syl |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) -> ( Y i^i Z ) C_ A ) |
21 |
1 3
|
paddss1 |
|- ( ( K e. HL /\ Z C_ A /\ ( Y i^i Z ) C_ A ) -> ( X C_ Z -> ( X .+ ( Y i^i Z ) ) C_ ( Z .+ ( Y i^i Z ) ) ) ) |
22 |
15 17 20 21
|
syl3anc |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) -> ( X C_ Z -> ( X .+ ( Y i^i Z ) ) C_ ( Z .+ ( Y i^i Z ) ) ) ) |
23 |
22
|
imp |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) /\ X C_ Z ) -> ( X .+ ( Y i^i Z ) ) C_ ( Z .+ ( Y i^i Z ) ) ) |
24 |
|
simplr3 |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) /\ X C_ Z ) -> Z e. S ) |
25 |
9 24 16
|
syl2anc |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) /\ X C_ Z ) -> Z C_ A ) |
26 |
|
inss2 |
|- ( Y i^i Z ) C_ Z |
27 |
1 3
|
paddss2 |
|- ( ( K e. HL /\ Z C_ A /\ Z C_ A ) -> ( ( Y i^i Z ) C_ Z -> ( Z .+ ( Y i^i Z ) ) C_ ( Z .+ Z ) ) ) |
28 |
26 27
|
mpi |
|- ( ( K e. HL /\ Z C_ A /\ Z C_ A ) -> ( Z .+ ( Y i^i Z ) ) C_ ( Z .+ Z ) ) |
29 |
9 25 25 28
|
syl3anc |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) /\ X C_ Z ) -> ( Z .+ ( Y i^i Z ) ) C_ ( Z .+ Z ) ) |
30 |
2 3
|
paddidm |
|- ( ( K e. HL /\ Z e. S ) -> ( Z .+ Z ) = Z ) |
31 |
9 24 30
|
syl2anc |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) /\ X C_ Z ) -> ( Z .+ Z ) = Z ) |
32 |
29 31
|
sseqtrd |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) /\ X C_ Z ) -> ( Z .+ ( Y i^i Z ) ) C_ Z ) |
33 |
23 32
|
sstrd |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) /\ X C_ Z ) -> ( X .+ ( Y i^i Z ) ) C_ Z ) |
34 |
14 33
|
ssind |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) /\ X C_ Z ) -> ( X .+ ( Y i^i Z ) ) C_ ( ( X .+ Y ) i^i Z ) ) |
35 |
7 34
|
eqssd |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) /\ X C_ Z ) -> ( ( X .+ Y ) i^i Z ) = ( X .+ ( Y i^i Z ) ) ) |
36 |
35
|
ex |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) -> ( X C_ Z -> ( ( X .+ Y ) i^i Z ) = ( X .+ ( Y i^i Z ) ) ) ) |