Step |
Hyp |
Ref |
Expression |
1 |
|
pmod.a |
|- A = ( Atoms ` K ) |
2 |
|
pmod.s |
|- S = ( PSubSp ` K ) |
3 |
|
pmod.p |
|- .+ = ( +P ` K ) |
4 |
|
incom |
|- ( X i^i Y ) = ( Y i^i X ) |
5 |
4
|
oveq1i |
|- ( ( X i^i Y ) .+ Z ) = ( ( Y i^i X ) .+ Z ) |
6 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
7 |
6
|
3ad2ant1 |
|- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) /\ Z C_ X ) -> K e. Lat ) |
8 |
|
simp22 |
|- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) /\ Z C_ X ) -> Y C_ A ) |
9 |
|
ssinss1 |
|- ( Y C_ A -> ( Y i^i X ) C_ A ) |
10 |
8 9
|
syl |
|- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) /\ Z C_ X ) -> ( Y i^i X ) C_ A ) |
11 |
|
simp23 |
|- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) /\ Z C_ X ) -> Z C_ A ) |
12 |
1 3
|
paddcom |
|- ( ( K e. Lat /\ ( Y i^i X ) C_ A /\ Z C_ A ) -> ( ( Y i^i X ) .+ Z ) = ( Z .+ ( Y i^i X ) ) ) |
13 |
7 10 11 12
|
syl3anc |
|- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) /\ Z C_ X ) -> ( ( Y i^i X ) .+ Z ) = ( Z .+ ( Y i^i X ) ) ) |
14 |
5 13
|
eqtrid |
|- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) /\ Z C_ X ) -> ( ( X i^i Y ) .+ Z ) = ( Z .+ ( Y i^i X ) ) ) |
15 |
|
simp21 |
|- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) /\ Z C_ X ) -> X e. S ) |
16 |
11 8 15
|
3jca |
|- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) /\ Z C_ X ) -> ( Z C_ A /\ Y C_ A /\ X e. S ) ) |
17 |
1 2 3
|
pmod1i |
|- ( ( K e. HL /\ ( Z C_ A /\ Y C_ A /\ X e. S ) ) -> ( Z C_ X -> ( ( Z .+ Y ) i^i X ) = ( Z .+ ( Y i^i X ) ) ) ) |
18 |
17
|
3impia |
|- ( ( K e. HL /\ ( Z C_ A /\ Y C_ A /\ X e. S ) /\ Z C_ X ) -> ( ( Z .+ Y ) i^i X ) = ( Z .+ ( Y i^i X ) ) ) |
19 |
16 18
|
syld3an2 |
|- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) /\ Z C_ X ) -> ( ( Z .+ Y ) i^i X ) = ( Z .+ ( Y i^i X ) ) ) |
20 |
1 3
|
paddcom |
|- ( ( K e. Lat /\ Z C_ A /\ Y C_ A ) -> ( Z .+ Y ) = ( Y .+ Z ) ) |
21 |
7 11 8 20
|
syl3anc |
|- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) /\ Z C_ X ) -> ( Z .+ Y ) = ( Y .+ Z ) ) |
22 |
21
|
ineq1d |
|- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) /\ Z C_ X ) -> ( ( Z .+ Y ) i^i X ) = ( ( Y .+ Z ) i^i X ) ) |
23 |
14 19 22
|
3eqtr2d |
|- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) /\ Z C_ X ) -> ( ( X i^i Y ) .+ Z ) = ( ( Y .+ Z ) i^i X ) ) |
24 |
|
incom |
|- ( ( Y .+ Z ) i^i X ) = ( X i^i ( Y .+ Z ) ) |
25 |
23 24
|
eqtrdi |
|- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) /\ Z C_ X ) -> ( ( X i^i Y ) .+ Z ) = ( X i^i ( Y .+ Z ) ) ) |
26 |
25
|
3expia |
|- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) ) -> ( Z C_ X -> ( ( X i^i Y ) .+ Z ) = ( X i^i ( Y .+ Z ) ) ) ) |