| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmod.a |
|- A = ( Atoms ` K ) |
| 2 |
|
pmod.s |
|- S = ( PSubSp ` K ) |
| 3 |
|
pmod.p |
|- .+ = ( +P ` K ) |
| 4 |
|
incom |
|- ( X i^i ( ( X i^i Z ) .+ Y ) ) = ( ( ( X i^i Z ) .+ Y ) i^i X ) |
| 5 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
| 6 |
5
|
adantr |
|- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) ) -> K e. Lat ) |
| 7 |
|
simpr2 |
|- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) ) -> Y C_ A ) |
| 8 |
|
inss2 |
|- ( X i^i Z ) C_ Z |
| 9 |
|
simpr3 |
|- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) ) -> Z C_ A ) |
| 10 |
8 9
|
sstrid |
|- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) ) -> ( X i^i Z ) C_ A ) |
| 11 |
1 3
|
paddcom |
|- ( ( K e. Lat /\ Y C_ A /\ ( X i^i Z ) C_ A ) -> ( Y .+ ( X i^i Z ) ) = ( ( X i^i Z ) .+ Y ) ) |
| 12 |
6 7 10 11
|
syl3anc |
|- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) ) -> ( Y .+ ( X i^i Z ) ) = ( ( X i^i Z ) .+ Y ) ) |
| 13 |
12
|
ineq2d |
|- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) ) -> ( X i^i ( Y .+ ( X i^i Z ) ) ) = ( X i^i ( ( X i^i Z ) .+ Y ) ) ) |
| 14 |
|
incom |
|- ( X i^i Y ) = ( Y i^i X ) |
| 15 |
14
|
oveq2i |
|- ( ( X i^i Z ) .+ ( X i^i Y ) ) = ( ( X i^i Z ) .+ ( Y i^i X ) ) |
| 16 |
|
inss2 |
|- ( X i^i Y ) C_ Y |
| 17 |
16 7
|
sstrid |
|- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) ) -> ( X i^i Y ) C_ A ) |
| 18 |
1 3
|
paddcom |
|- ( ( K e. Lat /\ ( X i^i Y ) C_ A /\ ( X i^i Z ) C_ A ) -> ( ( X i^i Y ) .+ ( X i^i Z ) ) = ( ( X i^i Z ) .+ ( X i^i Y ) ) ) |
| 19 |
6 17 10 18
|
syl3anc |
|- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) ) -> ( ( X i^i Y ) .+ ( X i^i Z ) ) = ( ( X i^i Z ) .+ ( X i^i Y ) ) ) |
| 20 |
|
simpr1 |
|- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) ) -> X e. S ) |
| 21 |
10 7 20
|
3jca |
|- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) ) -> ( ( X i^i Z ) C_ A /\ Y C_ A /\ X e. S ) ) |
| 22 |
|
inss1 |
|- ( X i^i Z ) C_ X |
| 23 |
1 2 3
|
pmod1i |
|- ( ( K e. HL /\ ( ( X i^i Z ) C_ A /\ Y C_ A /\ X e. S ) ) -> ( ( X i^i Z ) C_ X -> ( ( ( X i^i Z ) .+ Y ) i^i X ) = ( ( X i^i Z ) .+ ( Y i^i X ) ) ) ) |
| 24 |
22 23
|
mpi |
|- ( ( K e. HL /\ ( ( X i^i Z ) C_ A /\ Y C_ A /\ X e. S ) ) -> ( ( ( X i^i Z ) .+ Y ) i^i X ) = ( ( X i^i Z ) .+ ( Y i^i X ) ) ) |
| 25 |
21 24
|
syldan |
|- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) ) -> ( ( ( X i^i Z ) .+ Y ) i^i X ) = ( ( X i^i Z ) .+ ( Y i^i X ) ) ) |
| 26 |
15 19 25
|
3eqtr4a |
|- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) ) -> ( ( X i^i Y ) .+ ( X i^i Z ) ) = ( ( ( X i^i Z ) .+ Y ) i^i X ) ) |
| 27 |
4 13 26
|
3eqtr4a |
|- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) ) -> ( X i^i ( Y .+ ( X i^i Z ) ) ) = ( ( X i^i Y ) .+ ( X i^i Z ) ) ) |