Step |
Hyp |
Ref |
Expression |
1 |
|
pmod.a |
|- A = ( Atoms ` K ) |
2 |
|
pmod.s |
|- S = ( PSubSp ` K ) |
3 |
|
pmod.p |
|- .+ = ( +P ` K ) |
4 |
|
incom |
|- ( X i^i ( ( X i^i Z ) .+ Y ) ) = ( ( ( X i^i Z ) .+ Y ) i^i X ) |
5 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
6 |
5
|
adantr |
|- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) ) -> K e. Lat ) |
7 |
|
simpr2 |
|- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) ) -> Y C_ A ) |
8 |
|
inss2 |
|- ( X i^i Z ) C_ Z |
9 |
|
simpr3 |
|- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) ) -> Z C_ A ) |
10 |
8 9
|
sstrid |
|- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) ) -> ( X i^i Z ) C_ A ) |
11 |
1 3
|
paddcom |
|- ( ( K e. Lat /\ Y C_ A /\ ( X i^i Z ) C_ A ) -> ( Y .+ ( X i^i Z ) ) = ( ( X i^i Z ) .+ Y ) ) |
12 |
6 7 10 11
|
syl3anc |
|- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) ) -> ( Y .+ ( X i^i Z ) ) = ( ( X i^i Z ) .+ Y ) ) |
13 |
12
|
ineq2d |
|- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) ) -> ( X i^i ( Y .+ ( X i^i Z ) ) ) = ( X i^i ( ( X i^i Z ) .+ Y ) ) ) |
14 |
|
incom |
|- ( X i^i Y ) = ( Y i^i X ) |
15 |
14
|
oveq2i |
|- ( ( X i^i Z ) .+ ( X i^i Y ) ) = ( ( X i^i Z ) .+ ( Y i^i X ) ) |
16 |
|
inss2 |
|- ( X i^i Y ) C_ Y |
17 |
16 7
|
sstrid |
|- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) ) -> ( X i^i Y ) C_ A ) |
18 |
1 3
|
paddcom |
|- ( ( K e. Lat /\ ( X i^i Y ) C_ A /\ ( X i^i Z ) C_ A ) -> ( ( X i^i Y ) .+ ( X i^i Z ) ) = ( ( X i^i Z ) .+ ( X i^i Y ) ) ) |
19 |
6 17 10 18
|
syl3anc |
|- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) ) -> ( ( X i^i Y ) .+ ( X i^i Z ) ) = ( ( X i^i Z ) .+ ( X i^i Y ) ) ) |
20 |
|
simpr1 |
|- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) ) -> X e. S ) |
21 |
10 7 20
|
3jca |
|- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) ) -> ( ( X i^i Z ) C_ A /\ Y C_ A /\ X e. S ) ) |
22 |
|
inss1 |
|- ( X i^i Z ) C_ X |
23 |
1 2 3
|
pmod1i |
|- ( ( K e. HL /\ ( ( X i^i Z ) C_ A /\ Y C_ A /\ X e. S ) ) -> ( ( X i^i Z ) C_ X -> ( ( ( X i^i Z ) .+ Y ) i^i X ) = ( ( X i^i Z ) .+ ( Y i^i X ) ) ) ) |
24 |
22 23
|
mpi |
|- ( ( K e. HL /\ ( ( X i^i Z ) C_ A /\ Y C_ A /\ X e. S ) ) -> ( ( ( X i^i Z ) .+ Y ) i^i X ) = ( ( X i^i Z ) .+ ( Y i^i X ) ) ) |
25 |
21 24
|
syldan |
|- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) ) -> ( ( ( X i^i Z ) .+ Y ) i^i X ) = ( ( X i^i Z ) .+ ( Y i^i X ) ) ) |
26 |
15 19 25
|
3eqtr4a |
|- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) ) -> ( ( X i^i Y ) .+ ( X i^i Z ) ) = ( ( ( X i^i Z ) .+ Y ) i^i X ) ) |
27 |
4 13 26
|
3eqtr4a |
|- ( ( K e. HL /\ ( X e. S /\ Y C_ A /\ Z C_ A ) ) -> ( X i^i ( Y .+ ( X i^i Z ) ) ) = ( ( X i^i Y ) .+ ( X i^i Z ) ) ) |