Step |
Hyp |
Ref |
Expression |
1 |
|
pmodlem.l |
|- .<_ = ( le ` K ) |
2 |
|
pmodlem.j |
|- .\/ = ( join ` K ) |
3 |
|
pmodlem.a |
|- A = ( Atoms ` K ) |
4 |
|
pmodlem.s |
|- S = ( PSubSp ` K ) |
5 |
|
pmodlem.p |
|- .+ = ( +P ` K ) |
6 |
|
simpr |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ X = (/) ) -> X = (/) ) |
7 |
6
|
oveq1d |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ X = (/) ) -> ( X .+ Y ) = ( (/) .+ Y ) ) |
8 |
|
simpl1 |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ X = (/) ) -> K e. HL ) |
9 |
|
simpl22 |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ X = (/) ) -> Y C_ A ) |
10 |
3 5
|
padd02 |
|- ( ( K e. HL /\ Y C_ A ) -> ( (/) .+ Y ) = Y ) |
11 |
8 9 10
|
syl2anc |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ X = (/) ) -> ( (/) .+ Y ) = Y ) |
12 |
7 11
|
eqtrd |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ X = (/) ) -> ( X .+ Y ) = Y ) |
13 |
12
|
ineq1d |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ X = (/) ) -> ( ( X .+ Y ) i^i Z ) = ( Y i^i Z ) ) |
14 |
|
ssinss1 |
|- ( Y C_ A -> ( Y i^i Z ) C_ A ) |
15 |
9 14
|
syl |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ X = (/) ) -> ( Y i^i Z ) C_ A ) |
16 |
|
simpl21 |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ X = (/) ) -> X C_ A ) |
17 |
3 5
|
sspadd2 |
|- ( ( K e. HL /\ ( Y i^i Z ) C_ A /\ X C_ A ) -> ( Y i^i Z ) C_ ( X .+ ( Y i^i Z ) ) ) |
18 |
8 15 16 17
|
syl3anc |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ X = (/) ) -> ( Y i^i Z ) C_ ( X .+ ( Y i^i Z ) ) ) |
19 |
13 18
|
eqsstrd |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ X = (/) ) -> ( ( X .+ Y ) i^i Z ) C_ ( X .+ ( Y i^i Z ) ) ) |
20 |
|
oveq2 |
|- ( Y = (/) -> ( X .+ Y ) = ( X .+ (/) ) ) |
21 |
|
simp1 |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) -> K e. HL ) |
22 |
|
simp21 |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) -> X C_ A ) |
23 |
3 5
|
padd01 |
|- ( ( K e. HL /\ X C_ A ) -> ( X .+ (/) ) = X ) |
24 |
21 22 23
|
syl2anc |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) -> ( X .+ (/) ) = X ) |
25 |
20 24
|
sylan9eqr |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ Y = (/) ) -> ( X .+ Y ) = X ) |
26 |
25
|
ineq1d |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ Y = (/) ) -> ( ( X .+ Y ) i^i Z ) = ( X i^i Z ) ) |
27 |
|
inss1 |
|- ( X i^i Z ) C_ X |
28 |
|
simpl1 |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ Y = (/) ) -> K e. HL ) |
29 |
|
simpl21 |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ Y = (/) ) -> X C_ A ) |
30 |
|
simpl22 |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ Y = (/) ) -> Y C_ A ) |
31 |
30 14
|
syl |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ Y = (/) ) -> ( Y i^i Z ) C_ A ) |
32 |
3 5
|
sspadd1 |
|- ( ( K e. HL /\ X C_ A /\ ( Y i^i Z ) C_ A ) -> X C_ ( X .+ ( Y i^i Z ) ) ) |
33 |
28 29 31 32
|
syl3anc |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ Y = (/) ) -> X C_ ( X .+ ( Y i^i Z ) ) ) |
34 |
27 33
|
sstrid |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ Y = (/) ) -> ( X i^i Z ) C_ ( X .+ ( Y i^i Z ) ) ) |
35 |
26 34
|
eqsstrd |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ Y = (/) ) -> ( ( X .+ Y ) i^i Z ) C_ ( X .+ ( Y i^i Z ) ) ) |
36 |
|
elin |
|- ( p e. ( ( X .+ Y ) i^i Z ) <-> ( p e. ( X .+ Y ) /\ p e. Z ) ) |
37 |
|
simpl1 |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( ( X =/= (/) /\ Y =/= (/) ) /\ p e. Z ) ) -> K e. HL ) |
38 |
37
|
hllatd |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( ( X =/= (/) /\ Y =/= (/) ) /\ p e. Z ) ) -> K e. Lat ) |
39 |
|
simpl21 |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( ( X =/= (/) /\ Y =/= (/) ) /\ p e. Z ) ) -> X C_ A ) |
40 |
|
simpl22 |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( ( X =/= (/) /\ Y =/= (/) ) /\ p e. Z ) ) -> Y C_ A ) |
41 |
|
simprl |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( ( X =/= (/) /\ Y =/= (/) ) /\ p e. Z ) ) -> ( X =/= (/) /\ Y =/= (/) ) ) |
42 |
1 2 3 5
|
elpaddn0 |
|- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ ( X =/= (/) /\ Y =/= (/) ) ) -> ( p e. ( X .+ Y ) <-> ( p e. A /\ E. q e. X E. r e. Y p .<_ ( q .\/ r ) ) ) ) |
43 |
38 39 40 41 42
|
syl31anc |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( ( X =/= (/) /\ Y =/= (/) ) /\ p e. Z ) ) -> ( p e. ( X .+ Y ) <-> ( p e. A /\ E. q e. X E. r e. Y p .<_ ( q .\/ r ) ) ) ) |
44 |
|
simpl1 |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( p e. Z /\ ( q e. X /\ r e. Y ) /\ p .<_ ( q .\/ r ) ) ) -> K e. HL ) |
45 |
|
simpl21 |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( p e. Z /\ ( q e. X /\ r e. Y ) /\ p .<_ ( q .\/ r ) ) ) -> X C_ A ) |
46 |
|
simpl22 |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( p e. Z /\ ( q e. X /\ r e. Y ) /\ p .<_ ( q .\/ r ) ) ) -> Y C_ A ) |
47 |
|
simpl23 |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( p e. Z /\ ( q e. X /\ r e. Y ) /\ p .<_ ( q .\/ r ) ) ) -> Z e. S ) |
48 |
|
simpl3 |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( p e. Z /\ ( q e. X /\ r e. Y ) /\ p .<_ ( q .\/ r ) ) ) -> X C_ Z ) |
49 |
|
simpr1 |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( p e. Z /\ ( q e. X /\ r e. Y ) /\ p .<_ ( q .\/ r ) ) ) -> p e. Z ) |
50 |
|
simpr2l |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( p e. Z /\ ( q e. X /\ r e. Y ) /\ p .<_ ( q .\/ r ) ) ) -> q e. X ) |
51 |
|
simpr2r |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( p e. Z /\ ( q e. X /\ r e. Y ) /\ p .<_ ( q .\/ r ) ) ) -> r e. Y ) |
52 |
|
simpr3 |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( p e. Z /\ ( q e. X /\ r e. Y ) /\ p .<_ ( q .\/ r ) ) ) -> p .<_ ( q .\/ r ) ) |
53 |
1 2 3 4 5
|
pmodlem1 |
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ ( Z e. S /\ X C_ Z /\ p e. Z ) /\ ( q e. X /\ r e. Y /\ p .<_ ( q .\/ r ) ) ) -> p e. ( X .+ ( Y i^i Z ) ) ) |
54 |
44 45 46 47 48 49 50 51 52 53
|
syl333anc |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( p e. Z /\ ( q e. X /\ r e. Y ) /\ p .<_ ( q .\/ r ) ) ) -> p e. ( X .+ ( Y i^i Z ) ) ) |
55 |
54
|
3exp2 |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) -> ( p e. Z -> ( ( q e. X /\ r e. Y ) -> ( p .<_ ( q .\/ r ) -> p e. ( X .+ ( Y i^i Z ) ) ) ) ) ) |
56 |
55
|
imp |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ p e. Z ) -> ( ( q e. X /\ r e. Y ) -> ( p .<_ ( q .\/ r ) -> p e. ( X .+ ( Y i^i Z ) ) ) ) ) |
57 |
56
|
rexlimdvv |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ p e. Z ) -> ( E. q e. X E. r e. Y p .<_ ( q .\/ r ) -> p e. ( X .+ ( Y i^i Z ) ) ) ) |
58 |
57
|
adantld |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ p e. Z ) -> ( ( p e. A /\ E. q e. X E. r e. Y p .<_ ( q .\/ r ) ) -> p e. ( X .+ ( Y i^i Z ) ) ) ) |
59 |
58
|
adantrl |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( ( X =/= (/) /\ Y =/= (/) ) /\ p e. Z ) ) -> ( ( p e. A /\ E. q e. X E. r e. Y p .<_ ( q .\/ r ) ) -> p e. ( X .+ ( Y i^i Z ) ) ) ) |
60 |
43 59
|
sylbid |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( ( X =/= (/) /\ Y =/= (/) ) /\ p e. Z ) ) -> ( p e. ( X .+ Y ) -> p e. ( X .+ ( Y i^i Z ) ) ) ) |
61 |
60
|
exp32 |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) -> ( ( X =/= (/) /\ Y =/= (/) ) -> ( p e. Z -> ( p e. ( X .+ Y ) -> p e. ( X .+ ( Y i^i Z ) ) ) ) ) ) |
62 |
61
|
com34 |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) -> ( ( X =/= (/) /\ Y =/= (/) ) -> ( p e. ( X .+ Y ) -> ( p e. Z -> p e. ( X .+ ( Y i^i Z ) ) ) ) ) ) |
63 |
62
|
imp4b |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( X =/= (/) /\ Y =/= (/) ) ) -> ( ( p e. ( X .+ Y ) /\ p e. Z ) -> p e. ( X .+ ( Y i^i Z ) ) ) ) |
64 |
36 63
|
syl5bi |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( X =/= (/) /\ Y =/= (/) ) ) -> ( p e. ( ( X .+ Y ) i^i Z ) -> p e. ( X .+ ( Y i^i Z ) ) ) ) |
65 |
64
|
ssrdv |
|- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( X =/= (/) /\ Y =/= (/) ) ) -> ( ( X .+ Y ) i^i Z ) C_ ( X .+ ( Y i^i Z ) ) ) |
66 |
19 35 65
|
pm2.61da2ne |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) -> ( ( X .+ Y ) i^i Z ) C_ ( X .+ ( Y i^i Z ) ) ) |