Metamath Proof Explorer


Theorem pmtr3ncomlem2

Description: Lemma 2 for pmtr3ncom . (Contributed by AV, 17-Mar-2018)

Ref Expression
Hypotheses pmtr3ncom.t
|- T = ( pmTrsp ` D )
pmtr3ncom.f
|- F = ( T ` { X , Y } )
pmtr3ncom.g
|- G = ( T ` { Y , Z } )
Assertion pmtr3ncomlem2
|- ( ( D e. V /\ ( X e. D /\ Y e. D /\ Z e. D ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( G o. F ) =/= ( F o. G ) )

Proof

Step Hyp Ref Expression
1 pmtr3ncom.t
 |-  T = ( pmTrsp ` D )
2 pmtr3ncom.f
 |-  F = ( T ` { X , Y } )
3 pmtr3ncom.g
 |-  G = ( T ` { Y , Z } )
4 1 2 3 pmtr3ncomlem1
 |-  ( ( D e. V /\ ( X e. D /\ Y e. D /\ Z e. D ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( ( G o. F ) ` X ) =/= ( ( F o. G ) ` X ) )
5 fveq1
 |-  ( ( G o. F ) = ( F o. G ) -> ( ( G o. F ) ` X ) = ( ( F o. G ) ` X ) )
6 5 necon3i
 |-  ( ( ( G o. F ) ` X ) =/= ( ( F o. G ) ` X ) -> ( G o. F ) =/= ( F o. G ) )
7 4 6 syl
 |-  ( ( D e. V /\ ( X e. D /\ Y e. D /\ Z e. D ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( G o. F ) =/= ( F o. G ) )