Description: Lemma 2 for pmtr3ncom . (Contributed by AV, 17-Mar-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pmtr3ncom.t | |- T = ( pmTrsp ` D ) |
|
pmtr3ncom.f | |- F = ( T ` { X , Y } ) |
||
pmtr3ncom.g | |- G = ( T ` { Y , Z } ) |
||
Assertion | pmtr3ncomlem2 | |- ( ( D e. V /\ ( X e. D /\ Y e. D /\ Z e. D ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( G o. F ) =/= ( F o. G ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmtr3ncom.t | |- T = ( pmTrsp ` D ) |
|
2 | pmtr3ncom.f | |- F = ( T ` { X , Y } ) |
|
3 | pmtr3ncom.g | |- G = ( T ` { Y , Z } ) |
|
4 | 1 2 3 | pmtr3ncomlem1 | |- ( ( D e. V /\ ( X e. D /\ Y e. D /\ Z e. D ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( ( G o. F ) ` X ) =/= ( ( F o. G ) ` X ) ) |
5 | fveq1 | |- ( ( G o. F ) = ( F o. G ) -> ( ( G o. F ) ` X ) = ( ( F o. G ) ` X ) ) |
|
6 | 5 | necon3i | |- ( ( ( G o. F ) ` X ) =/= ( ( F o. G ) ` X ) -> ( G o. F ) =/= ( F o. G ) ) |
7 | 4 6 | syl | |- ( ( D e. V /\ ( X e. D /\ Y e. D /\ Z e. D ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( G o. F ) =/= ( F o. G ) ) |