Step |
Hyp |
Ref |
Expression |
1 |
|
pmtrcnel.s |
|- S = ( SymGrp ` D ) |
2 |
|
pmtrcnel.t |
|- T = ( pmTrsp ` D ) |
3 |
|
pmtrcnel.b |
|- B = ( Base ` S ) |
4 |
|
pmtrcnel.j |
|- J = ( F ` I ) |
5 |
|
pmtrcnel.d |
|- ( ph -> D e. V ) |
6 |
|
pmtrcnel.f |
|- ( ph -> F e. B ) |
7 |
|
pmtrcnel.i |
|- ( ph -> I e. dom ( F \ _I ) ) |
8 |
|
mvdco |
|- dom ( ( ( T ` { I , J } ) o. F ) \ _I ) C_ ( dom ( ( T ` { I , J } ) \ _I ) u. dom ( F \ _I ) ) |
9 |
|
difss |
|- ( F \ _I ) C_ F |
10 |
|
dmss |
|- ( ( F \ _I ) C_ F -> dom ( F \ _I ) C_ dom F ) |
11 |
9 10
|
ax-mp |
|- dom ( F \ _I ) C_ dom F |
12 |
11 7
|
sselid |
|- ( ph -> I e. dom F ) |
13 |
1 3
|
symgbasf1o |
|- ( F e. B -> F : D -1-1-onto-> D ) |
14 |
|
f1of |
|- ( F : D -1-1-onto-> D -> F : D --> D ) |
15 |
6 13 14
|
3syl |
|- ( ph -> F : D --> D ) |
16 |
15
|
fdmd |
|- ( ph -> dom F = D ) |
17 |
12 16
|
eleqtrd |
|- ( ph -> I e. D ) |
18 |
15 17
|
ffvelrnd |
|- ( ph -> ( F ` I ) e. D ) |
19 |
4 18
|
eqeltrid |
|- ( ph -> J e. D ) |
20 |
17 19
|
prssd |
|- ( ph -> { I , J } C_ D ) |
21 |
15
|
ffnd |
|- ( ph -> F Fn D ) |
22 |
|
fnelnfp |
|- ( ( F Fn D /\ I e. D ) -> ( I e. dom ( F \ _I ) <-> ( F ` I ) =/= I ) ) |
23 |
22
|
biimpa |
|- ( ( ( F Fn D /\ I e. D ) /\ I e. dom ( F \ _I ) ) -> ( F ` I ) =/= I ) |
24 |
21 17 7 23
|
syl21anc |
|- ( ph -> ( F ` I ) =/= I ) |
25 |
24
|
necomd |
|- ( ph -> I =/= ( F ` I ) ) |
26 |
4
|
a1i |
|- ( ph -> J = ( F ` I ) ) |
27 |
25 26
|
neeqtrrd |
|- ( ph -> I =/= J ) |
28 |
|
pr2nelem |
|- ( ( I e. D /\ J e. D /\ I =/= J ) -> { I , J } ~~ 2o ) |
29 |
17 19 27 28
|
syl3anc |
|- ( ph -> { I , J } ~~ 2o ) |
30 |
2
|
pmtrmvd |
|- ( ( D e. V /\ { I , J } C_ D /\ { I , J } ~~ 2o ) -> dom ( ( T ` { I , J } ) \ _I ) = { I , J } ) |
31 |
5 20 29 30
|
syl3anc |
|- ( ph -> dom ( ( T ` { I , J } ) \ _I ) = { I , J } ) |
32 |
6 13
|
syl |
|- ( ph -> F : D -1-1-onto-> D ) |
33 |
|
f1omvdmvd |
|- ( ( F : D -1-1-onto-> D /\ I e. dom ( F \ _I ) ) -> ( F ` I ) e. ( dom ( F \ _I ) \ { I } ) ) |
34 |
32 7 33
|
syl2anc |
|- ( ph -> ( F ` I ) e. ( dom ( F \ _I ) \ { I } ) ) |
35 |
4 34
|
eqeltrid |
|- ( ph -> J e. ( dom ( F \ _I ) \ { I } ) ) |
36 |
35
|
eldifad |
|- ( ph -> J e. dom ( F \ _I ) ) |
37 |
7 36
|
prssd |
|- ( ph -> { I , J } C_ dom ( F \ _I ) ) |
38 |
31 37
|
eqsstrd |
|- ( ph -> dom ( ( T ` { I , J } ) \ _I ) C_ dom ( F \ _I ) ) |
39 |
|
ssequn1 |
|- ( dom ( ( T ` { I , J } ) \ _I ) C_ dom ( F \ _I ) <-> ( dom ( ( T ` { I , J } ) \ _I ) u. dom ( F \ _I ) ) = dom ( F \ _I ) ) |
40 |
38 39
|
sylib |
|- ( ph -> ( dom ( ( T ` { I , J } ) \ _I ) u. dom ( F \ _I ) ) = dom ( F \ _I ) ) |
41 |
8 40
|
sseqtrid |
|- ( ph -> dom ( ( ( T ` { I , J } ) o. F ) \ _I ) C_ dom ( F \ _I ) ) |
42 |
41
|
sselda |
|- ( ( ph /\ x e. dom ( ( ( T ` { I , J } ) o. F ) \ _I ) ) -> x e. dom ( F \ _I ) ) |
43 |
|
simpr |
|- ( ( ph /\ x = I ) -> x = I ) |
44 |
|
eqid |
|- ran T = ran T |
45 |
2 44
|
pmtrrn |
|- ( ( D e. V /\ { I , J } C_ D /\ { I , J } ~~ 2o ) -> ( T ` { I , J } ) e. ran T ) |
46 |
5 20 29 45
|
syl3anc |
|- ( ph -> ( T ` { I , J } ) e. ran T ) |
47 |
2 44
|
pmtrff1o |
|- ( ( T ` { I , J } ) e. ran T -> ( T ` { I , J } ) : D -1-1-onto-> D ) |
48 |
46 47
|
syl |
|- ( ph -> ( T ` { I , J } ) : D -1-1-onto-> D ) |
49 |
|
f1oco |
|- ( ( ( T ` { I , J } ) : D -1-1-onto-> D /\ F : D -1-1-onto-> D ) -> ( ( T ` { I , J } ) o. F ) : D -1-1-onto-> D ) |
50 |
48 32 49
|
syl2anc |
|- ( ph -> ( ( T ` { I , J } ) o. F ) : D -1-1-onto-> D ) |
51 |
|
f1ofn |
|- ( ( ( T ` { I , J } ) o. F ) : D -1-1-onto-> D -> ( ( T ` { I , J } ) o. F ) Fn D ) |
52 |
50 51
|
syl |
|- ( ph -> ( ( T ` { I , J } ) o. F ) Fn D ) |
53 |
15 17
|
fvco3d |
|- ( ph -> ( ( ( T ` { I , J } ) o. F ) ` I ) = ( ( T ` { I , J } ) ` ( F ` I ) ) ) |
54 |
26
|
eqcomd |
|- ( ph -> ( F ` I ) = J ) |
55 |
54
|
fveq2d |
|- ( ph -> ( ( T ` { I , J } ) ` ( F ` I ) ) = ( ( T ` { I , J } ) ` J ) ) |
56 |
2
|
pmtrprfv2 |
|- ( ( D e. V /\ ( I e. D /\ J e. D /\ I =/= J ) ) -> ( ( T ` { I , J } ) ` J ) = I ) |
57 |
5 17 19 27 56
|
syl13anc |
|- ( ph -> ( ( T ` { I , J } ) ` J ) = I ) |
58 |
53 55 57
|
3eqtrd |
|- ( ph -> ( ( ( T ` { I , J } ) o. F ) ` I ) = I ) |
59 |
|
nne |
|- ( -. ( ( ( T ` { I , J } ) o. F ) ` I ) =/= I <-> ( ( ( T ` { I , J } ) o. F ) ` I ) = I ) |
60 |
58 59
|
sylibr |
|- ( ph -> -. ( ( ( T ` { I , J } ) o. F ) ` I ) =/= I ) |
61 |
|
fnelnfp |
|- ( ( ( ( T ` { I , J } ) o. F ) Fn D /\ I e. D ) -> ( I e. dom ( ( ( T ` { I , J } ) o. F ) \ _I ) <-> ( ( ( T ` { I , J } ) o. F ) ` I ) =/= I ) ) |
62 |
61
|
notbid |
|- ( ( ( ( T ` { I , J } ) o. F ) Fn D /\ I e. D ) -> ( -. I e. dom ( ( ( T ` { I , J } ) o. F ) \ _I ) <-> -. ( ( ( T ` { I , J } ) o. F ) ` I ) =/= I ) ) |
63 |
62
|
biimpar |
|- ( ( ( ( ( T ` { I , J } ) o. F ) Fn D /\ I e. D ) /\ -. ( ( ( T ` { I , J } ) o. F ) ` I ) =/= I ) -> -. I e. dom ( ( ( T ` { I , J } ) o. F ) \ _I ) ) |
64 |
52 17 60 63
|
syl21anc |
|- ( ph -> -. I e. dom ( ( ( T ` { I , J } ) o. F ) \ _I ) ) |
65 |
64
|
adantr |
|- ( ( ph /\ x = I ) -> -. I e. dom ( ( ( T ` { I , J } ) o. F ) \ _I ) ) |
66 |
43 65
|
eqneltrd |
|- ( ( ph /\ x = I ) -> -. x e. dom ( ( ( T ` { I , J } ) o. F ) \ _I ) ) |
67 |
66
|
ex |
|- ( ph -> ( x = I -> -. x e. dom ( ( ( T ` { I , J } ) o. F ) \ _I ) ) ) |
68 |
67
|
necon2ad |
|- ( ph -> ( x e. dom ( ( ( T ` { I , J } ) o. F ) \ _I ) -> x =/= I ) ) |
69 |
68
|
imp |
|- ( ( ph /\ x e. dom ( ( ( T ` { I , J } ) o. F ) \ _I ) ) -> x =/= I ) |
70 |
|
eldifsn |
|- ( x e. ( dom ( F \ _I ) \ { I } ) <-> ( x e. dom ( F \ _I ) /\ x =/= I ) ) |
71 |
42 69 70
|
sylanbrc |
|- ( ( ph /\ x e. dom ( ( ( T ` { I , J } ) o. F ) \ _I ) ) -> x e. ( dom ( F \ _I ) \ { I } ) ) |
72 |
71
|
ex |
|- ( ph -> ( x e. dom ( ( ( T ` { I , J } ) o. F ) \ _I ) -> x e. ( dom ( F \ _I ) \ { I } ) ) ) |
73 |
72
|
ssrdv |
|- ( ph -> dom ( ( ( T ` { I , J } ) o. F ) \ _I ) C_ ( dom ( F \ _I ) \ { I } ) ) |