Step |
Hyp |
Ref |
Expression |
1 |
|
pmtrcnel.s |
|- S = ( SymGrp ` D ) |
2 |
|
pmtrcnel.t |
|- T = ( pmTrsp ` D ) |
3 |
|
pmtrcnel.b |
|- B = ( Base ` S ) |
4 |
|
pmtrcnel.j |
|- J = ( F ` I ) |
5 |
|
pmtrcnel.d |
|- ( ph -> D e. V ) |
6 |
|
pmtrcnel.f |
|- ( ph -> F e. B ) |
7 |
|
pmtrcnel.i |
|- ( ph -> I e. dom ( F \ _I ) ) |
8 |
|
mvdco |
|- dom ( ( `' ( T ` { I , J } ) o. ( ( T ` { I , J } ) o. F ) ) \ _I ) C_ ( dom ( `' ( T ` { I , J } ) \ _I ) u. dom ( ( ( T ` { I , J } ) o. F ) \ _I ) ) |
9 |
8
|
a1i |
|- ( ph -> dom ( ( `' ( T ` { I , J } ) o. ( ( T ` { I , J } ) o. F ) ) \ _I ) C_ ( dom ( `' ( T ` { I , J } ) \ _I ) u. dom ( ( ( T ` { I , J } ) o. F ) \ _I ) ) ) |
10 |
|
coass |
|- ( ( `' ( T ` { I , J } ) o. ( T ` { I , J } ) ) o. F ) = ( `' ( T ` { I , J } ) o. ( ( T ` { I , J } ) o. F ) ) |
11 |
|
difss |
|- ( F \ _I ) C_ F |
12 |
|
dmss |
|- ( ( F \ _I ) C_ F -> dom ( F \ _I ) C_ dom F ) |
13 |
11 12
|
ax-mp |
|- dom ( F \ _I ) C_ dom F |
14 |
13 7
|
sselid |
|- ( ph -> I e. dom F ) |
15 |
1 3
|
symgbasf1o |
|- ( F e. B -> F : D -1-1-onto-> D ) |
16 |
|
f1of |
|- ( F : D -1-1-onto-> D -> F : D --> D ) |
17 |
6 15 16
|
3syl |
|- ( ph -> F : D --> D ) |
18 |
17
|
fdmd |
|- ( ph -> dom F = D ) |
19 |
14 18
|
eleqtrd |
|- ( ph -> I e. D ) |
20 |
17 19
|
ffvelrnd |
|- ( ph -> ( F ` I ) e. D ) |
21 |
4 20
|
eqeltrid |
|- ( ph -> J e. D ) |
22 |
19 21
|
prssd |
|- ( ph -> { I , J } C_ D ) |
23 |
17
|
ffnd |
|- ( ph -> F Fn D ) |
24 |
|
fnelnfp |
|- ( ( F Fn D /\ I e. D ) -> ( I e. dom ( F \ _I ) <-> ( F ` I ) =/= I ) ) |
25 |
24
|
biimpa |
|- ( ( ( F Fn D /\ I e. D ) /\ I e. dom ( F \ _I ) ) -> ( F ` I ) =/= I ) |
26 |
23 19 7 25
|
syl21anc |
|- ( ph -> ( F ` I ) =/= I ) |
27 |
26
|
necomd |
|- ( ph -> I =/= ( F ` I ) ) |
28 |
4
|
a1i |
|- ( ph -> J = ( F ` I ) ) |
29 |
27 28
|
neeqtrrd |
|- ( ph -> I =/= J ) |
30 |
|
pr2nelem |
|- ( ( I e. D /\ J e. D /\ I =/= J ) -> { I , J } ~~ 2o ) |
31 |
19 21 29 30
|
syl3anc |
|- ( ph -> { I , J } ~~ 2o ) |
32 |
|
eqid |
|- ran T = ran T |
33 |
2 32
|
pmtrrn |
|- ( ( D e. V /\ { I , J } C_ D /\ { I , J } ~~ 2o ) -> ( T ` { I , J } ) e. ran T ) |
34 |
5 22 31 33
|
syl3anc |
|- ( ph -> ( T ` { I , J } ) e. ran T ) |
35 |
2 32
|
pmtrff1o |
|- ( ( T ` { I , J } ) e. ran T -> ( T ` { I , J } ) : D -1-1-onto-> D ) |
36 |
|
f1ococnv1 |
|- ( ( T ` { I , J } ) : D -1-1-onto-> D -> ( `' ( T ` { I , J } ) o. ( T ` { I , J } ) ) = ( _I |` D ) ) |
37 |
34 35 36
|
3syl |
|- ( ph -> ( `' ( T ` { I , J } ) o. ( T ` { I , J } ) ) = ( _I |` D ) ) |
38 |
37
|
coeq1d |
|- ( ph -> ( ( `' ( T ` { I , J } ) o. ( T ` { I , J } ) ) o. F ) = ( ( _I |` D ) o. F ) ) |
39 |
10 38
|
eqtr3id |
|- ( ph -> ( `' ( T ` { I , J } ) o. ( ( T ` { I , J } ) o. F ) ) = ( ( _I |` D ) o. F ) ) |
40 |
|
fcoi2 |
|- ( F : D --> D -> ( ( _I |` D ) o. F ) = F ) |
41 |
17 40
|
syl |
|- ( ph -> ( ( _I |` D ) o. F ) = F ) |
42 |
39 41
|
eqtrd |
|- ( ph -> ( `' ( T ` { I , J } ) o. ( ( T ` { I , J } ) o. F ) ) = F ) |
43 |
42
|
difeq1d |
|- ( ph -> ( ( `' ( T ` { I , J } ) o. ( ( T ` { I , J } ) o. F ) ) \ _I ) = ( F \ _I ) ) |
44 |
43
|
dmeqd |
|- ( ph -> dom ( ( `' ( T ` { I , J } ) o. ( ( T ` { I , J } ) o. F ) ) \ _I ) = dom ( F \ _I ) ) |
45 |
2 32
|
pmtrfcnv |
|- ( ( T ` { I , J } ) e. ran T -> `' ( T ` { I , J } ) = ( T ` { I , J } ) ) |
46 |
34 45
|
syl |
|- ( ph -> `' ( T ` { I , J } ) = ( T ` { I , J } ) ) |
47 |
46
|
difeq1d |
|- ( ph -> ( `' ( T ` { I , J } ) \ _I ) = ( ( T ` { I , J } ) \ _I ) ) |
48 |
47
|
dmeqd |
|- ( ph -> dom ( `' ( T ` { I , J } ) \ _I ) = dom ( ( T ` { I , J } ) \ _I ) ) |
49 |
2
|
pmtrmvd |
|- ( ( D e. V /\ { I , J } C_ D /\ { I , J } ~~ 2o ) -> dom ( ( T ` { I , J } ) \ _I ) = { I , J } ) |
50 |
5 22 31 49
|
syl3anc |
|- ( ph -> dom ( ( T ` { I , J } ) \ _I ) = { I , J } ) |
51 |
48 50
|
eqtrd |
|- ( ph -> dom ( `' ( T ` { I , J } ) \ _I ) = { I , J } ) |
52 |
51
|
uneq1d |
|- ( ph -> ( dom ( `' ( T ` { I , J } ) \ _I ) u. dom ( ( ( T ` { I , J } ) o. F ) \ _I ) ) = ( { I , J } u. dom ( ( ( T ` { I , J } ) o. F ) \ _I ) ) ) |
53 |
|
uncom |
|- ( { I , J } u. dom ( ( ( T ` { I , J } ) o. F ) \ _I ) ) = ( dom ( ( ( T ` { I , J } ) o. F ) \ _I ) u. { I , J } ) |
54 |
52 53
|
eqtrdi |
|- ( ph -> ( dom ( `' ( T ` { I , J } ) \ _I ) u. dom ( ( ( T ` { I , J } ) o. F ) \ _I ) ) = ( dom ( ( ( T ` { I , J } ) o. F ) \ _I ) u. { I , J } ) ) |
55 |
9 44 54
|
3sstr3d |
|- ( ph -> dom ( F \ _I ) C_ ( dom ( ( ( T ` { I , J } ) o. F ) \ _I ) u. { I , J } ) ) |
56 |
55
|
ssdifd |
|- ( ph -> ( dom ( F \ _I ) \ { I , J } ) C_ ( ( dom ( ( ( T ` { I , J } ) o. F ) \ _I ) u. { I , J } ) \ { I , J } ) ) |
57 |
|
difun2 |
|- ( ( dom ( ( ( T ` { I , J } ) o. F ) \ _I ) u. { I , J } ) \ { I , J } ) = ( dom ( ( ( T ` { I , J } ) o. F ) \ _I ) \ { I , J } ) |
58 |
|
difss |
|- ( dom ( ( ( T ` { I , J } ) o. F ) \ _I ) \ { I , J } ) C_ dom ( ( ( T ` { I , J } ) o. F ) \ _I ) |
59 |
57 58
|
eqsstri |
|- ( ( dom ( ( ( T ` { I , J } ) o. F ) \ _I ) u. { I , J } ) \ { I , J } ) C_ dom ( ( ( T ` { I , J } ) o. F ) \ _I ) |
60 |
56 59
|
sstrdi |
|- ( ph -> ( dom ( F \ _I ) \ { I , J } ) C_ dom ( ( ( T ` { I , J } ) o. F ) \ _I ) ) |