| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmtrcnel.s |
|- S = ( SymGrp ` D ) |
| 2 |
|
pmtrcnel.t |
|- T = ( pmTrsp ` D ) |
| 3 |
|
pmtrcnel.b |
|- B = ( Base ` S ) |
| 4 |
|
pmtrcnel.j |
|- J = ( F ` I ) |
| 5 |
|
pmtrcnel.d |
|- ( ph -> D e. V ) |
| 6 |
|
pmtrcnel.f |
|- ( ph -> F e. B ) |
| 7 |
|
pmtrcnel.i |
|- ( ph -> I e. dom ( F \ _I ) ) |
| 8 |
|
pmtrcnel.e |
|- E = dom ( F \ _I ) |
| 9 |
|
pmtrcnel.a |
|- A = dom ( ( ( T ` { I , J } ) o. F ) \ _I ) |
| 10 |
1 2 3 4 5 6 7
|
pmtrcnel |
|- ( ph -> dom ( ( ( T ` { I , J } ) o. F ) \ _I ) C_ ( dom ( F \ _I ) \ { I } ) ) |
| 11 |
8
|
difeq1i |
|- ( E \ { I } ) = ( dom ( F \ _I ) \ { I } ) |
| 12 |
10 9 11
|
3sstr4g |
|- ( ph -> A C_ ( E \ { I } ) ) |
| 13 |
12
|
ssdifd |
|- ( ph -> ( A \ ( E \ { I , J } ) ) C_ ( ( E \ { I } ) \ ( E \ { I , J } ) ) ) |
| 14 |
|
difpr |
|- ( E \ { I , J } ) = ( ( E \ { I } ) \ { J } ) |
| 15 |
14
|
difeq2i |
|- ( ( E \ { I } ) \ ( E \ { I , J } ) ) = ( ( E \ { I } ) \ ( ( E \ { I } ) \ { J } ) ) |
| 16 |
1 3
|
symgbasf1o |
|- ( F e. B -> F : D -1-1-onto-> D ) |
| 17 |
6 16
|
syl |
|- ( ph -> F : D -1-1-onto-> D ) |
| 18 |
|
f1omvdmvd |
|- ( ( F : D -1-1-onto-> D /\ I e. dom ( F \ _I ) ) -> ( F ` I ) e. ( dom ( F \ _I ) \ { I } ) ) |
| 19 |
17 7 18
|
syl2anc |
|- ( ph -> ( F ` I ) e. ( dom ( F \ _I ) \ { I } ) ) |
| 20 |
4 19
|
eqeltrid |
|- ( ph -> J e. ( dom ( F \ _I ) \ { I } ) ) |
| 21 |
20
|
eldifad |
|- ( ph -> J e. dom ( F \ _I ) ) |
| 22 |
21 8
|
eleqtrrdi |
|- ( ph -> J e. E ) |
| 23 |
4
|
a1i |
|- ( ph -> J = ( F ` I ) ) |
| 24 |
|
f1of |
|- ( F : D -1-1-onto-> D -> F : D --> D ) |
| 25 |
17 24
|
syl |
|- ( ph -> F : D --> D ) |
| 26 |
25
|
ffnd |
|- ( ph -> F Fn D ) |
| 27 |
|
difss |
|- ( F \ _I ) C_ F |
| 28 |
|
dmss |
|- ( ( F \ _I ) C_ F -> dom ( F \ _I ) C_ dom F ) |
| 29 |
27 28
|
ax-mp |
|- dom ( F \ _I ) C_ dom F |
| 30 |
29 7
|
sselid |
|- ( ph -> I e. dom F ) |
| 31 |
25
|
fdmd |
|- ( ph -> dom F = D ) |
| 32 |
30 31
|
eleqtrd |
|- ( ph -> I e. D ) |
| 33 |
|
fnelnfp |
|- ( ( F Fn D /\ I e. D ) -> ( I e. dom ( F \ _I ) <-> ( F ` I ) =/= I ) ) |
| 34 |
33
|
biimpa |
|- ( ( ( F Fn D /\ I e. D ) /\ I e. dom ( F \ _I ) ) -> ( F ` I ) =/= I ) |
| 35 |
26 32 7 34
|
syl21anc |
|- ( ph -> ( F ` I ) =/= I ) |
| 36 |
23 35
|
eqnetrd |
|- ( ph -> J =/= I ) |
| 37 |
|
eldifsn |
|- ( J e. ( E \ { I } ) <-> ( J e. E /\ J =/= I ) ) |
| 38 |
22 36 37
|
sylanbrc |
|- ( ph -> J e. ( E \ { I } ) ) |
| 39 |
38
|
snssd |
|- ( ph -> { J } C_ ( E \ { I } ) ) |
| 40 |
|
dfss4 |
|- ( { J } C_ ( E \ { I } ) <-> ( ( E \ { I } ) \ ( ( E \ { I } ) \ { J } ) ) = { J } ) |
| 41 |
39 40
|
sylib |
|- ( ph -> ( ( E \ { I } ) \ ( ( E \ { I } ) \ { J } ) ) = { J } ) |
| 42 |
15 41
|
eqtrid |
|- ( ph -> ( ( E \ { I } ) \ ( E \ { I , J } ) ) = { J } ) |
| 43 |
13 42
|
sseqtrd |
|- ( ph -> ( A \ ( E \ { I , J } ) ) C_ { J } ) |
| 44 |
|
sssn |
|- ( ( A \ ( E \ { I , J } ) ) C_ { J } <-> ( ( A \ ( E \ { I , J } ) ) = (/) \/ ( A \ ( E \ { I , J } ) ) = { J } ) ) |
| 45 |
43 44
|
sylib |
|- ( ph -> ( ( A \ ( E \ { I , J } ) ) = (/) \/ ( A \ ( E \ { I , J } ) ) = { J } ) ) |
| 46 |
|
simpr |
|- ( ( ph /\ ( A \ ( E \ { I , J } ) ) = (/) ) -> ( A \ ( E \ { I , J } ) ) = (/) ) |
| 47 |
1 2 3 4 5 6 7
|
pmtrcnel2 |
|- ( ph -> ( dom ( F \ _I ) \ { I , J } ) C_ dom ( ( ( T ` { I , J } ) o. F ) \ _I ) ) |
| 48 |
8
|
difeq1i |
|- ( E \ { I , J } ) = ( dom ( F \ _I ) \ { I , J } ) |
| 49 |
47 48 9
|
3sstr4g |
|- ( ph -> ( E \ { I , J } ) C_ A ) |
| 50 |
|
ssdif0 |
|- ( ( E \ { I , J } ) C_ A <-> ( ( E \ { I , J } ) \ A ) = (/) ) |
| 51 |
49 50
|
sylib |
|- ( ph -> ( ( E \ { I , J } ) \ A ) = (/) ) |
| 52 |
51
|
adantr |
|- ( ( ph /\ ( A \ ( E \ { I , J } ) ) = (/) ) -> ( ( E \ { I , J } ) \ A ) = (/) ) |
| 53 |
|
eqdif |
|- ( ( ( A \ ( E \ { I , J } ) ) = (/) /\ ( ( E \ { I , J } ) \ A ) = (/) ) -> A = ( E \ { I , J } ) ) |
| 54 |
46 52 53
|
syl2anc |
|- ( ( ph /\ ( A \ ( E \ { I , J } ) ) = (/) ) -> A = ( E \ { I , J } ) ) |
| 55 |
54
|
ex |
|- ( ph -> ( ( A \ ( E \ { I , J } ) ) = (/) -> A = ( E \ { I , J } ) ) ) |
| 56 |
12
|
adantr |
|- ( ( ph /\ ( A \ ( E \ { I , J } ) ) = { J } ) -> A C_ ( E \ { I } ) ) |
| 57 |
14 49
|
eqsstrrid |
|- ( ph -> ( ( E \ { I } ) \ { J } ) C_ A ) |
| 58 |
57
|
adantr |
|- ( ( ph /\ ( A \ ( E \ { I , J } ) ) = { J } ) -> ( ( E \ { I } ) \ { J } ) C_ A ) |
| 59 |
|
ssundif |
|- ( ( E \ { I } ) C_ ( { J } u. A ) <-> ( ( E \ { I } ) \ { J } ) C_ A ) |
| 60 |
58 59
|
sylibr |
|- ( ( ph /\ ( A \ ( E \ { I , J } ) ) = { J } ) -> ( E \ { I } ) C_ ( { J } u. A ) ) |
| 61 |
|
ssidd |
|- ( ( ph /\ ( A \ ( E \ { I , J } ) ) = { J } ) -> { J } C_ { J } ) |
| 62 |
|
simpr |
|- ( ( ph /\ ( A \ ( E \ { I , J } ) ) = { J } ) -> ( A \ ( E \ { I , J } ) ) = { J } ) |
| 63 |
61 62
|
sseqtrrd |
|- ( ( ph /\ ( A \ ( E \ { I , J } ) ) = { J } ) -> { J } C_ ( A \ ( E \ { I , J } ) ) ) |
| 64 |
63
|
difss2d |
|- ( ( ph /\ ( A \ ( E \ { I , J } ) ) = { J } ) -> { J } C_ A ) |
| 65 |
|
ssequn1 |
|- ( { J } C_ A <-> ( { J } u. A ) = A ) |
| 66 |
64 65
|
sylib |
|- ( ( ph /\ ( A \ ( E \ { I , J } ) ) = { J } ) -> ( { J } u. A ) = A ) |
| 67 |
60 66
|
sseqtrd |
|- ( ( ph /\ ( A \ ( E \ { I , J } ) ) = { J } ) -> ( E \ { I } ) C_ A ) |
| 68 |
56 67
|
eqssd |
|- ( ( ph /\ ( A \ ( E \ { I , J } ) ) = { J } ) -> A = ( E \ { I } ) ) |
| 69 |
68
|
ex |
|- ( ph -> ( ( A \ ( E \ { I , J } ) ) = { J } -> A = ( E \ { I } ) ) ) |
| 70 |
55 69
|
orim12d |
|- ( ph -> ( ( ( A \ ( E \ { I , J } ) ) = (/) \/ ( A \ ( E \ { I , J } ) ) = { J } ) -> ( A = ( E \ { I , J } ) \/ A = ( E \ { I } ) ) ) ) |
| 71 |
45 70
|
mpd |
|- ( ph -> ( A = ( E \ { I , J } ) \/ A = ( E \ { I } ) ) ) |