Step |
Hyp |
Ref |
Expression |
1 |
|
pmtrdifel.t |
|- T = ran ( pmTrsp ` ( N \ { K } ) ) |
2 |
|
pmtrdifel.r |
|- R = ran ( pmTrsp ` N ) |
3 |
|
eqid |
|- ( ( pmTrsp ` N ) ` dom ( t \ _I ) ) = ( ( pmTrsp ` N ) ` dom ( t \ _I ) ) |
4 |
1 2 3
|
pmtrdifellem1 |
|- ( t e. T -> ( ( pmTrsp ` N ) ` dom ( t \ _I ) ) e. R ) |
5 |
1 2 3
|
pmtrdifellem3 |
|- ( t e. T -> A. x e. ( N \ { K } ) ( t ` x ) = ( ( ( pmTrsp ` N ) ` dom ( t \ _I ) ) ` x ) ) |
6 |
|
fveq1 |
|- ( r = ( ( pmTrsp ` N ) ` dom ( t \ _I ) ) -> ( r ` x ) = ( ( ( pmTrsp ` N ) ` dom ( t \ _I ) ) ` x ) ) |
7 |
6
|
eqeq2d |
|- ( r = ( ( pmTrsp ` N ) ` dom ( t \ _I ) ) -> ( ( t ` x ) = ( r ` x ) <-> ( t ` x ) = ( ( ( pmTrsp ` N ) ` dom ( t \ _I ) ) ` x ) ) ) |
8 |
7
|
ralbidv |
|- ( r = ( ( pmTrsp ` N ) ` dom ( t \ _I ) ) -> ( A. x e. ( N \ { K } ) ( t ` x ) = ( r ` x ) <-> A. x e. ( N \ { K } ) ( t ` x ) = ( ( ( pmTrsp ` N ) ` dom ( t \ _I ) ) ` x ) ) ) |
9 |
8
|
rspcev |
|- ( ( ( ( pmTrsp ` N ) ` dom ( t \ _I ) ) e. R /\ A. x e. ( N \ { K } ) ( t ` x ) = ( ( ( pmTrsp ` N ) ` dom ( t \ _I ) ) ` x ) ) -> E. r e. R A. x e. ( N \ { K } ) ( t ` x ) = ( r ` x ) ) |
10 |
4 5 9
|
syl2anc |
|- ( t e. T -> E. r e. R A. x e. ( N \ { K } ) ( t ` x ) = ( r ` x ) ) |
11 |
10
|
rgen |
|- A. t e. T E. r e. R A. x e. ( N \ { K } ) ( t ` x ) = ( r ` x ) |