| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmtrdifel.t |  |-  T = ran ( pmTrsp ` ( N \ { K } ) ) | 
						
							| 2 |  | pmtrdifel.r |  |-  R = ran ( pmTrsp ` N ) | 
						
							| 3 |  | eqid |  |-  ( ( pmTrsp ` N ) ` dom ( t \ _I ) ) = ( ( pmTrsp ` N ) ` dom ( t \ _I ) ) | 
						
							| 4 | 1 2 3 | pmtrdifellem1 |  |-  ( t e. T -> ( ( pmTrsp ` N ) ` dom ( t \ _I ) ) e. R ) | 
						
							| 5 | 1 2 3 | pmtrdifellem3 |  |-  ( t e. T -> A. x e. ( N \ { K } ) ( t ` x ) = ( ( ( pmTrsp ` N ) ` dom ( t \ _I ) ) ` x ) ) | 
						
							| 6 |  | fveq1 |  |-  ( r = ( ( pmTrsp ` N ) ` dom ( t \ _I ) ) -> ( r ` x ) = ( ( ( pmTrsp ` N ) ` dom ( t \ _I ) ) ` x ) ) | 
						
							| 7 | 6 | eqeq2d |  |-  ( r = ( ( pmTrsp ` N ) ` dom ( t \ _I ) ) -> ( ( t ` x ) = ( r ` x ) <-> ( t ` x ) = ( ( ( pmTrsp ` N ) ` dom ( t \ _I ) ) ` x ) ) ) | 
						
							| 8 | 7 | ralbidv |  |-  ( r = ( ( pmTrsp ` N ) ` dom ( t \ _I ) ) -> ( A. x e. ( N \ { K } ) ( t ` x ) = ( r ` x ) <-> A. x e. ( N \ { K } ) ( t ` x ) = ( ( ( pmTrsp ` N ) ` dom ( t \ _I ) ) ` x ) ) ) | 
						
							| 9 | 8 | rspcev |  |-  ( ( ( ( pmTrsp ` N ) ` dom ( t \ _I ) ) e. R /\ A. x e. ( N \ { K } ) ( t ` x ) = ( ( ( pmTrsp ` N ) ` dom ( t \ _I ) ) ` x ) ) -> E. r e. R A. x e. ( N \ { K } ) ( t ` x ) = ( r ` x ) ) | 
						
							| 10 | 4 5 9 | syl2anc |  |-  ( t e. T -> E. r e. R A. x e. ( N \ { K } ) ( t ` x ) = ( r ` x ) ) | 
						
							| 11 | 10 | rgen |  |-  A. t e. T E. r e. R A. x e. ( N \ { K } ) ( t ` x ) = ( r ` x ) |