Metamath Proof Explorer


Theorem pmtrdifel

Description: A transposition of elements of a set without a special element corresponds to a transposition of elements of the set. (Contributed by AV, 15-Jan-2019)

Ref Expression
Hypotheses pmtrdifel.t
|- T = ran ( pmTrsp ` ( N \ { K } ) )
pmtrdifel.r
|- R = ran ( pmTrsp ` N )
Assertion pmtrdifel
|- A. t e. T E. r e. R A. x e. ( N \ { K } ) ( t ` x ) = ( r ` x )

Proof

Step Hyp Ref Expression
1 pmtrdifel.t
 |-  T = ran ( pmTrsp ` ( N \ { K } ) )
2 pmtrdifel.r
 |-  R = ran ( pmTrsp ` N )
3 eqid
 |-  ( ( pmTrsp ` N ) ` dom ( t \ _I ) ) = ( ( pmTrsp ` N ) ` dom ( t \ _I ) )
4 1 2 3 pmtrdifellem1
 |-  ( t e. T -> ( ( pmTrsp ` N ) ` dom ( t \ _I ) ) e. R )
5 1 2 3 pmtrdifellem3
 |-  ( t e. T -> A. x e. ( N \ { K } ) ( t ` x ) = ( ( ( pmTrsp ` N ) ` dom ( t \ _I ) ) ` x ) )
6 fveq1
 |-  ( r = ( ( pmTrsp ` N ) ` dom ( t \ _I ) ) -> ( r ` x ) = ( ( ( pmTrsp ` N ) ` dom ( t \ _I ) ) ` x ) )
7 6 eqeq2d
 |-  ( r = ( ( pmTrsp ` N ) ` dom ( t \ _I ) ) -> ( ( t ` x ) = ( r ` x ) <-> ( t ` x ) = ( ( ( pmTrsp ` N ) ` dom ( t \ _I ) ) ` x ) ) )
8 7 ralbidv
 |-  ( r = ( ( pmTrsp ` N ) ` dom ( t \ _I ) ) -> ( A. x e. ( N \ { K } ) ( t ` x ) = ( r ` x ) <-> A. x e. ( N \ { K } ) ( t ` x ) = ( ( ( pmTrsp ` N ) ` dom ( t \ _I ) ) ` x ) ) )
9 8 rspcev
 |-  ( ( ( ( pmTrsp ` N ) ` dom ( t \ _I ) ) e. R /\ A. x e. ( N \ { K } ) ( t ` x ) = ( ( ( pmTrsp ` N ) ` dom ( t \ _I ) ) ` x ) ) -> E. r e. R A. x e. ( N \ { K } ) ( t ` x ) = ( r ` x ) )
10 4 5 9 syl2anc
 |-  ( t e. T -> E. r e. R A. x e. ( N \ { K } ) ( t ` x ) = ( r ` x ) )
11 10 rgen
 |-  A. t e. T E. r e. R A. x e. ( N \ { K } ) ( t ` x ) = ( r ` x )