Step |
Hyp |
Ref |
Expression |
1 |
|
pmtrdifel.t |
|- T = ran ( pmTrsp ` ( N \ { K } ) ) |
2 |
|
pmtrdifel.r |
|- R = ran ( pmTrsp ` N ) |
3 |
|
pmtrdifel.0 |
|- S = ( ( pmTrsp ` N ) ` dom ( Q \ _I ) ) |
4 |
|
eqid |
|- ( pmTrsp ` ( N \ { K } ) ) = ( pmTrsp ` ( N \ { K } ) ) |
5 |
4 1
|
pmtrfb |
|- ( Q e. T <-> ( ( N \ { K } ) e. _V /\ Q : ( N \ { K } ) -1-1-onto-> ( N \ { K } ) /\ dom ( Q \ _I ) ~~ 2o ) ) |
6 |
|
difsnexi |
|- ( ( N \ { K } ) e. _V -> N e. _V ) |
7 |
|
f1of |
|- ( Q : ( N \ { K } ) -1-1-onto-> ( N \ { K } ) -> Q : ( N \ { K } ) --> ( N \ { K } ) ) |
8 |
|
fdm |
|- ( Q : ( N \ { K } ) --> ( N \ { K } ) -> dom Q = ( N \ { K } ) ) |
9 |
|
difssd |
|- ( dom Q = ( N \ { K } ) -> ( Q \ _I ) C_ Q ) |
10 |
|
dmss |
|- ( ( Q \ _I ) C_ Q -> dom ( Q \ _I ) C_ dom Q ) |
11 |
9 10
|
syl |
|- ( dom Q = ( N \ { K } ) -> dom ( Q \ _I ) C_ dom Q ) |
12 |
|
difssd |
|- ( dom Q = ( N \ { K } ) -> ( N \ { K } ) C_ N ) |
13 |
|
sseq1 |
|- ( dom Q = ( N \ { K } ) -> ( dom Q C_ N <-> ( N \ { K } ) C_ N ) ) |
14 |
12 13
|
mpbird |
|- ( dom Q = ( N \ { K } ) -> dom Q C_ N ) |
15 |
11 14
|
sstrd |
|- ( dom Q = ( N \ { K } ) -> dom ( Q \ _I ) C_ N ) |
16 |
7 8 15
|
3syl |
|- ( Q : ( N \ { K } ) -1-1-onto-> ( N \ { K } ) -> dom ( Q \ _I ) C_ N ) |
17 |
|
id |
|- ( dom ( Q \ _I ) ~~ 2o -> dom ( Q \ _I ) ~~ 2o ) |
18 |
|
eqid |
|- ( pmTrsp ` N ) = ( pmTrsp ` N ) |
19 |
18 2
|
pmtrrn |
|- ( ( N e. _V /\ dom ( Q \ _I ) C_ N /\ dom ( Q \ _I ) ~~ 2o ) -> ( ( pmTrsp ` N ) ` dom ( Q \ _I ) ) e. R ) |
20 |
3 19
|
eqeltrid |
|- ( ( N e. _V /\ dom ( Q \ _I ) C_ N /\ dom ( Q \ _I ) ~~ 2o ) -> S e. R ) |
21 |
6 16 17 20
|
syl3an |
|- ( ( ( N \ { K } ) e. _V /\ Q : ( N \ { K } ) -1-1-onto-> ( N \ { K } ) /\ dom ( Q \ _I ) ~~ 2o ) -> S e. R ) |
22 |
5 21
|
sylbi |
|- ( Q e. T -> S e. R ) |