| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmtrdifel.t |  |-  T = ran ( pmTrsp ` ( N \ { K } ) ) | 
						
							| 2 |  | pmtrdifel.r |  |-  R = ran ( pmTrsp ` N ) | 
						
							| 3 |  | pmtrdifel.0 |  |-  S = ( ( pmTrsp ` N ) ` dom ( Q \ _I ) ) | 
						
							| 4 | 3 | difeq1i |  |-  ( S \ _I ) = ( ( ( pmTrsp ` N ) ` dom ( Q \ _I ) ) \ _I ) | 
						
							| 5 | 4 | dmeqi |  |-  dom ( S \ _I ) = dom ( ( ( pmTrsp ` N ) ` dom ( Q \ _I ) ) \ _I ) | 
						
							| 6 |  | eqid |  |-  ( pmTrsp ` ( N \ { K } ) ) = ( pmTrsp ` ( N \ { K } ) ) | 
						
							| 7 | 6 1 | pmtrfb |  |-  ( Q e. T <-> ( ( N \ { K } ) e. _V /\ Q : ( N \ { K } ) -1-1-onto-> ( N \ { K } ) /\ dom ( Q \ _I ) ~~ 2o ) ) | 
						
							| 8 |  | difsnexi |  |-  ( ( N \ { K } ) e. _V -> N e. _V ) | 
						
							| 9 |  | f1of |  |-  ( Q : ( N \ { K } ) -1-1-onto-> ( N \ { K } ) -> Q : ( N \ { K } ) --> ( N \ { K } ) ) | 
						
							| 10 |  | fdm |  |-  ( Q : ( N \ { K } ) --> ( N \ { K } ) -> dom Q = ( N \ { K } ) ) | 
						
							| 11 |  | difssd |  |-  ( dom Q = ( N \ { K } ) -> ( Q \ _I ) C_ Q ) | 
						
							| 12 |  | dmss |  |-  ( ( Q \ _I ) C_ Q -> dom ( Q \ _I ) C_ dom Q ) | 
						
							| 13 | 11 12 | syl |  |-  ( dom Q = ( N \ { K } ) -> dom ( Q \ _I ) C_ dom Q ) | 
						
							| 14 |  | difssd |  |-  ( dom Q = ( N \ { K } ) -> ( N \ { K } ) C_ N ) | 
						
							| 15 |  | sseq1 |  |-  ( dom Q = ( N \ { K } ) -> ( dom Q C_ N <-> ( N \ { K } ) C_ N ) ) | 
						
							| 16 | 14 15 | mpbird |  |-  ( dom Q = ( N \ { K } ) -> dom Q C_ N ) | 
						
							| 17 | 13 16 | sstrd |  |-  ( dom Q = ( N \ { K } ) -> dom ( Q \ _I ) C_ N ) | 
						
							| 18 | 9 10 17 | 3syl |  |-  ( Q : ( N \ { K } ) -1-1-onto-> ( N \ { K } ) -> dom ( Q \ _I ) C_ N ) | 
						
							| 19 |  | id |  |-  ( dom ( Q \ _I ) ~~ 2o -> dom ( Q \ _I ) ~~ 2o ) | 
						
							| 20 | 8 18 19 | 3anim123i |  |-  ( ( ( N \ { K } ) e. _V /\ Q : ( N \ { K } ) -1-1-onto-> ( N \ { K } ) /\ dom ( Q \ _I ) ~~ 2o ) -> ( N e. _V /\ dom ( Q \ _I ) C_ N /\ dom ( Q \ _I ) ~~ 2o ) ) | 
						
							| 21 | 7 20 | sylbi |  |-  ( Q e. T -> ( N e. _V /\ dom ( Q \ _I ) C_ N /\ dom ( Q \ _I ) ~~ 2o ) ) | 
						
							| 22 |  | eqid |  |-  ( pmTrsp ` N ) = ( pmTrsp ` N ) | 
						
							| 23 | 22 | pmtrmvd |  |-  ( ( N e. _V /\ dom ( Q \ _I ) C_ N /\ dom ( Q \ _I ) ~~ 2o ) -> dom ( ( ( pmTrsp ` N ) ` dom ( Q \ _I ) ) \ _I ) = dom ( Q \ _I ) ) | 
						
							| 24 | 21 23 | syl |  |-  ( Q e. T -> dom ( ( ( pmTrsp ` N ) ` dom ( Q \ _I ) ) \ _I ) = dom ( Q \ _I ) ) | 
						
							| 25 | 5 24 | eqtrid |  |-  ( Q e. T -> dom ( S \ _I ) = dom ( Q \ _I ) ) |