Step |
Hyp |
Ref |
Expression |
1 |
|
pmtrdifel.t |
|- T = ran ( pmTrsp ` ( N \ { K } ) ) |
2 |
|
pmtrdifel.r |
|- R = ran ( pmTrsp ` N ) |
3 |
|
pmtrdifel.0 |
|- S = ( ( pmTrsp ` N ) ` dom ( Q \ _I ) ) |
4 |
1 2 3
|
pmtrdifellem1 |
|- ( Q e. T -> S e. R ) |
5 |
|
eqid |
|- ( pmTrsp ` N ) = ( pmTrsp ` N ) |
6 |
|
eqid |
|- dom ( S \ _I ) = dom ( S \ _I ) |
7 |
5 2 6
|
pmtrffv |
|- ( ( S e. R /\ K e. N ) -> ( S ` K ) = if ( K e. dom ( S \ _I ) , U. ( dom ( S \ _I ) \ { K } ) , K ) ) |
8 |
4 7
|
sylan |
|- ( ( Q e. T /\ K e. N ) -> ( S ` K ) = if ( K e. dom ( S \ _I ) , U. ( dom ( S \ _I ) \ { K } ) , K ) ) |
9 |
|
eqid |
|- ( SymGrp ` ( N \ { K } ) ) = ( SymGrp ` ( N \ { K } ) ) |
10 |
|
eqid |
|- ( Base ` ( SymGrp ` ( N \ { K } ) ) ) = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) |
11 |
1 9 10
|
symgtrf |
|- T C_ ( Base ` ( SymGrp ` ( N \ { K } ) ) ) |
12 |
11
|
sseli |
|- ( Q e. T -> Q e. ( Base ` ( SymGrp ` ( N \ { K } ) ) ) ) |
13 |
9 10
|
symgbasf |
|- ( Q e. ( Base ` ( SymGrp ` ( N \ { K } ) ) ) -> Q : ( N \ { K } ) --> ( N \ { K } ) ) |
14 |
|
ffn |
|- ( Q : ( N \ { K } ) --> ( N \ { K } ) -> Q Fn ( N \ { K } ) ) |
15 |
|
fndifnfp |
|- ( Q Fn ( N \ { K } ) -> dom ( Q \ _I ) = { x e. ( N \ { K } ) | ( Q ` x ) =/= x } ) |
16 |
|
ssrab2 |
|- { x e. ( N \ { K } ) | ( Q ` x ) =/= x } C_ ( N \ { K } ) |
17 |
|
ssel2 |
|- ( ( { x e. ( N \ { K } ) | ( Q ` x ) =/= x } C_ ( N \ { K } ) /\ K e. { x e. ( N \ { K } ) | ( Q ` x ) =/= x } ) -> K e. ( N \ { K } ) ) |
18 |
|
eldif |
|- ( K e. ( N \ { K } ) <-> ( K e. N /\ -. K e. { K } ) ) |
19 |
|
elsng |
|- ( K e. N -> ( K e. { K } <-> K = K ) ) |
20 |
19
|
notbid |
|- ( K e. N -> ( -. K e. { K } <-> -. K = K ) ) |
21 |
|
eqid |
|- K = K |
22 |
21
|
pm2.24i |
|- ( -. K = K -> -. K e. N ) |
23 |
20 22
|
syl6bi |
|- ( K e. N -> ( -. K e. { K } -> -. K e. N ) ) |
24 |
23
|
imp |
|- ( ( K e. N /\ -. K e. { K } ) -> -. K e. N ) |
25 |
18 24
|
sylbi |
|- ( K e. ( N \ { K } ) -> -. K e. N ) |
26 |
17 25
|
syl |
|- ( ( { x e. ( N \ { K } ) | ( Q ` x ) =/= x } C_ ( N \ { K } ) /\ K e. { x e. ( N \ { K } ) | ( Q ` x ) =/= x } ) -> -. K e. N ) |
27 |
16 26
|
mpan |
|- ( K e. { x e. ( N \ { K } ) | ( Q ` x ) =/= x } -> -. K e. N ) |
28 |
27
|
con2i |
|- ( K e. N -> -. K e. { x e. ( N \ { K } ) | ( Q ` x ) =/= x } ) |
29 |
|
eleq2 |
|- ( dom ( Q \ _I ) = { x e. ( N \ { K } ) | ( Q ` x ) =/= x } -> ( K e. dom ( Q \ _I ) <-> K e. { x e. ( N \ { K } ) | ( Q ` x ) =/= x } ) ) |
30 |
29
|
notbid |
|- ( dom ( Q \ _I ) = { x e. ( N \ { K } ) | ( Q ` x ) =/= x } -> ( -. K e. dom ( Q \ _I ) <-> -. K e. { x e. ( N \ { K } ) | ( Q ` x ) =/= x } ) ) |
31 |
28 30
|
syl5ibr |
|- ( dom ( Q \ _I ) = { x e. ( N \ { K } ) | ( Q ` x ) =/= x } -> ( K e. N -> -. K e. dom ( Q \ _I ) ) ) |
32 |
14 15 31
|
3syl |
|- ( Q : ( N \ { K } ) --> ( N \ { K } ) -> ( K e. N -> -. K e. dom ( Q \ _I ) ) ) |
33 |
12 13 32
|
3syl |
|- ( Q e. T -> ( K e. N -> -. K e. dom ( Q \ _I ) ) ) |
34 |
33
|
imp |
|- ( ( Q e. T /\ K e. N ) -> -. K e. dom ( Q \ _I ) ) |
35 |
1 2 3
|
pmtrdifellem2 |
|- ( Q e. T -> dom ( S \ _I ) = dom ( Q \ _I ) ) |
36 |
35
|
eleq2d |
|- ( Q e. T -> ( K e. dom ( S \ _I ) <-> K e. dom ( Q \ _I ) ) ) |
37 |
36
|
adantr |
|- ( ( Q e. T /\ K e. N ) -> ( K e. dom ( S \ _I ) <-> K e. dom ( Q \ _I ) ) ) |
38 |
34 37
|
mtbird |
|- ( ( Q e. T /\ K e. N ) -> -. K e. dom ( S \ _I ) ) |
39 |
38
|
iffalsed |
|- ( ( Q e. T /\ K e. N ) -> if ( K e. dom ( S \ _I ) , U. ( dom ( S \ _I ) \ { K } ) , K ) = K ) |
40 |
8 39
|
eqtrd |
|- ( ( Q e. T /\ K e. N ) -> ( S ` K ) = K ) |