Step |
Hyp |
Ref |
Expression |
1 |
|
pmtrdifel.t |
|- T = ran ( pmTrsp ` ( N \ { K } ) ) |
2 |
|
pmtrdifel.r |
|- R = ran ( pmTrsp ` N ) |
3 |
|
fveq2 |
|- ( j = n -> ( w ` j ) = ( w ` n ) ) |
4 |
3
|
difeq1d |
|- ( j = n -> ( ( w ` j ) \ _I ) = ( ( w ` n ) \ _I ) ) |
5 |
4
|
dmeqd |
|- ( j = n -> dom ( ( w ` j ) \ _I ) = dom ( ( w ` n ) \ _I ) ) |
6 |
5
|
fveq2d |
|- ( j = n -> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) = ( ( pmTrsp ` N ) ` dom ( ( w ` n ) \ _I ) ) ) |
7 |
6
|
cbvmptv |
|- ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) = ( n e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` n ) \ _I ) ) ) |
8 |
1 2 7
|
pmtrdifwrdellem1 |
|- ( w e. Word T -> ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) e. Word R ) |
9 |
1 2 7
|
pmtrdifwrdellem2 |
|- ( w e. Word T -> ( # ` w ) = ( # ` ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ) ) |
10 |
1 2 7
|
pmtrdifwrdellem3 |
|- ( w e. Word T -> A. i e. ( 0 ..^ ( # ` w ) ) A. x e. ( N \ { K } ) ( ( w ` i ) ` x ) = ( ( ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ` i ) ` x ) ) |
11 |
|
fveq2 |
|- ( u = ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) -> ( # ` u ) = ( # ` ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ) ) |
12 |
11
|
eqeq2d |
|- ( u = ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) -> ( ( # ` w ) = ( # ` u ) <-> ( # ` w ) = ( # ` ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ) ) ) |
13 |
|
fveq1 |
|- ( u = ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) -> ( u ` i ) = ( ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ` i ) ) |
14 |
13
|
fveq1d |
|- ( u = ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) -> ( ( u ` i ) ` x ) = ( ( ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ` i ) ` x ) ) |
15 |
14
|
eqeq2d |
|- ( u = ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) -> ( ( ( w ` i ) ` x ) = ( ( u ` i ) ` x ) <-> ( ( w ` i ) ` x ) = ( ( ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ` i ) ` x ) ) ) |
16 |
15
|
2ralbidv |
|- ( u = ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) -> ( A. i e. ( 0 ..^ ( # ` w ) ) A. x e. ( N \ { K } ) ( ( w ` i ) ` x ) = ( ( u ` i ) ` x ) <-> A. i e. ( 0 ..^ ( # ` w ) ) A. x e. ( N \ { K } ) ( ( w ` i ) ` x ) = ( ( ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ` i ) ` x ) ) ) |
17 |
12 16
|
anbi12d |
|- ( u = ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) -> ( ( ( # ` w ) = ( # ` u ) /\ A. i e. ( 0 ..^ ( # ` w ) ) A. x e. ( N \ { K } ) ( ( w ` i ) ` x ) = ( ( u ` i ) ` x ) ) <-> ( ( # ` w ) = ( # ` ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ) /\ A. i e. ( 0 ..^ ( # ` w ) ) A. x e. ( N \ { K } ) ( ( w ` i ) ` x ) = ( ( ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ` i ) ` x ) ) ) ) |
18 |
17
|
rspcev |
|- ( ( ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) e. Word R /\ ( ( # ` w ) = ( # ` ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ) /\ A. i e. ( 0 ..^ ( # ` w ) ) A. x e. ( N \ { K } ) ( ( w ` i ) ` x ) = ( ( ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ` i ) ` x ) ) ) -> E. u e. Word R ( ( # ` w ) = ( # ` u ) /\ A. i e. ( 0 ..^ ( # ` w ) ) A. x e. ( N \ { K } ) ( ( w ` i ) ` x ) = ( ( u ` i ) ` x ) ) ) |
19 |
8 9 10 18
|
syl12anc |
|- ( w e. Word T -> E. u e. Word R ( ( # ` w ) = ( # ` u ) /\ A. i e. ( 0 ..^ ( # ` w ) ) A. x e. ( N \ { K } ) ( ( w ` i ) ` x ) = ( ( u ` i ) ` x ) ) ) |
20 |
19
|
rgen |
|- A. w e. Word T E. u e. Word R ( ( # ` w ) = ( # ` u ) /\ A. i e. ( 0 ..^ ( # ` w ) ) A. x e. ( N \ { K } ) ( ( w ` i ) ` x ) = ( ( u ` i ) ` x ) ) |