Metamath Proof Explorer


Theorem pmtrdifwrdellem1

Description: Lemma 1 for pmtrdifwrdel . (Contributed by AV, 15-Jan-2019)

Ref Expression
Hypotheses pmtrdifel.t
|- T = ran ( pmTrsp ` ( N \ { K } ) )
pmtrdifel.r
|- R = ran ( pmTrsp ` N )
pmtrdifwrdel.0
|- U = ( x e. ( 0 ..^ ( # ` W ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( W ` x ) \ _I ) ) )
Assertion pmtrdifwrdellem1
|- ( W e. Word T -> U e. Word R )

Proof

Step Hyp Ref Expression
1 pmtrdifel.t
 |-  T = ran ( pmTrsp ` ( N \ { K } ) )
2 pmtrdifel.r
 |-  R = ran ( pmTrsp ` N )
3 pmtrdifwrdel.0
 |-  U = ( x e. ( 0 ..^ ( # ` W ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( W ` x ) \ _I ) ) )
4 wrdsymbcl
 |-  ( ( W e. Word T /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` x ) e. T )
5 eqid
 |-  ( ( pmTrsp ` N ) ` dom ( ( W ` x ) \ _I ) ) = ( ( pmTrsp ` N ) ` dom ( ( W ` x ) \ _I ) )
6 1 2 5 pmtrdifellem1
 |-  ( ( W ` x ) e. T -> ( ( pmTrsp ` N ) ` dom ( ( W ` x ) \ _I ) ) e. R )
7 4 6 syl
 |-  ( ( W e. Word T /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( ( pmTrsp ` N ) ` dom ( ( W ` x ) \ _I ) ) e. R )
8 7 3 fmptd
 |-  ( W e. Word T -> U : ( 0 ..^ ( # ` W ) ) --> R )
9 iswrdi
 |-  ( U : ( 0 ..^ ( # ` W ) ) --> R -> U e. Word R )
10 8 9 syl
 |-  ( W e. Word T -> U e. Word R )