Step |
Hyp |
Ref |
Expression |
1 |
|
pmtrdifel.t |
|- T = ran ( pmTrsp ` ( N \ { K } ) ) |
2 |
|
pmtrdifel.r |
|- R = ran ( pmTrsp ` N ) |
3 |
|
pmtrdifwrdel.0 |
|- U = ( x e. ( 0 ..^ ( # ` W ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( W ` x ) \ _I ) ) ) |
4 |
|
wrdsymbcl |
|- ( ( W e. Word T /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` i ) e. T ) |
5 |
|
eqid |
|- ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) = ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) |
6 |
1 2 5
|
pmtrdifellem3 |
|- ( ( W ` i ) e. T -> A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) ` n ) ) |
7 |
4 6
|
syl |
|- ( ( W e. Word T /\ i e. ( 0 ..^ ( # ` W ) ) ) -> A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) ` n ) ) |
8 |
|
fveq2 |
|- ( x = i -> ( W ` x ) = ( W ` i ) ) |
9 |
8
|
difeq1d |
|- ( x = i -> ( ( W ` x ) \ _I ) = ( ( W ` i ) \ _I ) ) |
10 |
9
|
dmeqd |
|- ( x = i -> dom ( ( W ` x ) \ _I ) = dom ( ( W ` i ) \ _I ) ) |
11 |
10
|
fveq2d |
|- ( x = i -> ( ( pmTrsp ` N ) ` dom ( ( W ` x ) \ _I ) ) = ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) ) |
12 |
|
simpr |
|- ( ( W e. Word T /\ i e. ( 0 ..^ ( # ` W ) ) ) -> i e. ( 0 ..^ ( # ` W ) ) ) |
13 |
|
fvexd |
|- ( ( W e. Word T /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) e. _V ) |
14 |
3 11 12 13
|
fvmptd3 |
|- ( ( W e. Word T /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( U ` i ) = ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) ) |
15 |
14
|
fveq1d |
|- ( ( W e. Word T /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( U ` i ) ` n ) = ( ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) ` n ) ) |
16 |
15
|
eqeq2d |
|- ( ( W e. Word T /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) <-> ( ( W ` i ) ` n ) = ( ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) ` n ) ) ) |
17 |
16
|
ralbidv |
|- ( ( W e. Word T /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) <-> A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) ` n ) ) ) |
18 |
7 17
|
mpbird |
|- ( ( W e. Word T /\ i e. ( 0 ..^ ( # ` W ) ) ) -> A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) |
19 |
18
|
ralrimiva |
|- ( W e. Word T -> A. i e. ( 0 ..^ ( # ` W ) ) A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) |