Metamath Proof Explorer


Theorem pmtrdifwrdellem3

Description: Lemma 3 for pmtrdifwrdel . (Contributed by AV, 15-Jan-2019)

Ref Expression
Hypotheses pmtrdifel.t
|- T = ran ( pmTrsp ` ( N \ { K } ) )
pmtrdifel.r
|- R = ran ( pmTrsp ` N )
pmtrdifwrdel.0
|- U = ( x e. ( 0 ..^ ( # ` W ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( W ` x ) \ _I ) ) )
Assertion pmtrdifwrdellem3
|- ( W e. Word T -> A. i e. ( 0 ..^ ( # ` W ) ) A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) )

Proof

Step Hyp Ref Expression
1 pmtrdifel.t
 |-  T = ran ( pmTrsp ` ( N \ { K } ) )
2 pmtrdifel.r
 |-  R = ran ( pmTrsp ` N )
3 pmtrdifwrdel.0
 |-  U = ( x e. ( 0 ..^ ( # ` W ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( W ` x ) \ _I ) ) )
4 wrdsymbcl
 |-  ( ( W e. Word T /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` i ) e. T )
5 eqid
 |-  ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) = ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) )
6 1 2 5 pmtrdifellem3
 |-  ( ( W ` i ) e. T -> A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) ` n ) )
7 4 6 syl
 |-  ( ( W e. Word T /\ i e. ( 0 ..^ ( # ` W ) ) ) -> A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) ` n ) )
8 fveq2
 |-  ( x = i -> ( W ` x ) = ( W ` i ) )
9 8 difeq1d
 |-  ( x = i -> ( ( W ` x ) \ _I ) = ( ( W ` i ) \ _I ) )
10 9 dmeqd
 |-  ( x = i -> dom ( ( W ` x ) \ _I ) = dom ( ( W ` i ) \ _I ) )
11 10 fveq2d
 |-  ( x = i -> ( ( pmTrsp ` N ) ` dom ( ( W ` x ) \ _I ) ) = ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) )
12 simpr
 |-  ( ( W e. Word T /\ i e. ( 0 ..^ ( # ` W ) ) ) -> i e. ( 0 ..^ ( # ` W ) ) )
13 fvexd
 |-  ( ( W e. Word T /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) e. _V )
14 3 11 12 13 fvmptd3
 |-  ( ( W e. Word T /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( U ` i ) = ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) )
15 14 fveq1d
 |-  ( ( W e. Word T /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( U ` i ) ` n ) = ( ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) ` n ) )
16 15 eqeq2d
 |-  ( ( W e. Word T /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) <-> ( ( W ` i ) ` n ) = ( ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) ` n ) ) )
17 16 ralbidv
 |-  ( ( W e. Word T /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) <-> A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) ` n ) ) )
18 7 17 mpbird
 |-  ( ( W e. Word T /\ i e. ( 0 ..^ ( # ` W ) ) ) -> A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) )
19 18 ralrimiva
 |-  ( W e. Word T -> A. i e. ( 0 ..^ ( # ` W ) ) A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) )