Step |
Hyp |
Ref |
Expression |
1 |
|
pmtrrn.t |
|- T = ( pmTrsp ` D ) |
2 |
|
pmtrrn.r |
|- R = ran T |
3 |
|
eqid |
|- dom ( F \ _I ) = dom ( F \ _I ) |
4 |
1 2 3
|
pmtrfrn |
|- ( F e. R -> ( ( D e. _V /\ dom ( F \ _I ) C_ D /\ dom ( F \ _I ) ~~ 2o ) /\ F = ( T ` dom ( F \ _I ) ) ) ) |
5 |
4
|
simpld |
|- ( F e. R -> ( D e. _V /\ dom ( F \ _I ) C_ D /\ dom ( F \ _I ) ~~ 2o ) ) |
6 |
1
|
pmtrf |
|- ( ( D e. _V /\ dom ( F \ _I ) C_ D /\ dom ( F \ _I ) ~~ 2o ) -> ( T ` dom ( F \ _I ) ) : D --> D ) |
7 |
5 6
|
syl |
|- ( F e. R -> ( T ` dom ( F \ _I ) ) : D --> D ) |
8 |
4
|
simprd |
|- ( F e. R -> F = ( T ` dom ( F \ _I ) ) ) |
9 |
8
|
feq1d |
|- ( F e. R -> ( F : D --> D <-> ( T ` dom ( F \ _I ) ) : D --> D ) ) |
10 |
7 9
|
mpbird |
|- ( F e. R -> F : D --> D ) |
11 |
1 2
|
pmtrfinv |
|- ( F e. R -> ( F o. F ) = ( _I |` D ) ) |
12 |
10 10 11 11
|
2fcoidinvd |
|- ( F e. R -> `' F = F ) |