| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmtrrn.t |  |-  T = ( pmTrsp ` D ) | 
						
							| 2 |  | pmtrrn.r |  |-  R = ran T | 
						
							| 3 |  | 2on0 |  |-  2o =/= (/) | 
						
							| 4 |  | eqid |  |-  dom ( F \ _I ) = dom ( F \ _I ) | 
						
							| 5 | 1 2 4 | pmtrfrn |  |-  ( F e. R -> ( ( D e. _V /\ dom ( F \ _I ) C_ D /\ dom ( F \ _I ) ~~ 2o ) /\ F = ( T ` dom ( F \ _I ) ) ) ) | 
						
							| 6 | 5 | simpld |  |-  ( F e. R -> ( D e. _V /\ dom ( F \ _I ) C_ D /\ dom ( F \ _I ) ~~ 2o ) ) | 
						
							| 7 | 6 | simp3d |  |-  ( F e. R -> dom ( F \ _I ) ~~ 2o ) | 
						
							| 8 |  | enen1 |  |-  ( dom ( F \ _I ) ~~ 2o -> ( dom ( F \ _I ) ~~ (/) <-> 2o ~~ (/) ) ) | 
						
							| 9 | 7 8 | syl |  |-  ( F e. R -> ( dom ( F \ _I ) ~~ (/) <-> 2o ~~ (/) ) ) | 
						
							| 10 |  | en0 |  |-  ( dom ( F \ _I ) ~~ (/) <-> dom ( F \ _I ) = (/) ) | 
						
							| 11 |  | en0 |  |-  ( 2o ~~ (/) <-> 2o = (/) ) | 
						
							| 12 | 9 10 11 | 3bitr3g |  |-  ( F e. R -> ( dom ( F \ _I ) = (/) <-> 2o = (/) ) ) | 
						
							| 13 | 12 | necon3bid |  |-  ( F e. R -> ( dom ( F \ _I ) =/= (/) <-> 2o =/= (/) ) ) | 
						
							| 14 | 3 13 | mpbiri |  |-  ( F e. R -> dom ( F \ _I ) =/= (/) ) |