Step |
Hyp |
Ref |
Expression |
1 |
|
pmtrrn.t |
|- T = ( pmTrsp ` D ) |
2 |
|
pmtrrn.r |
|- R = ran T |
3 |
|
pmtrfrn.p |
|- P = dom ( F \ _I ) |
4 |
|
noel |
|- -. F e. (/) |
5 |
1
|
rnfvprc |
|- ( -. D e. _V -> ran T = (/) ) |
6 |
2 5
|
eqtrid |
|- ( -. D e. _V -> R = (/) ) |
7 |
6
|
eleq2d |
|- ( -. D e. _V -> ( F e. R <-> F e. (/) ) ) |
8 |
4 7
|
mtbiri |
|- ( -. D e. _V -> -. F e. R ) |
9 |
8
|
con4i |
|- ( F e. R -> D e. _V ) |
10 |
|
mptexg |
|- ( D e. _V -> ( z e. D |-> if ( z e. w , U. ( w \ { z } ) , z ) ) e. _V ) |
11 |
10
|
ralrimivw |
|- ( D e. _V -> A. w e. { x e. ~P D | x ~~ 2o } ( z e. D |-> if ( z e. w , U. ( w \ { z } ) , z ) ) e. _V ) |
12 |
|
eqid |
|- ( w e. { x e. ~P D | x ~~ 2o } |-> ( z e. D |-> if ( z e. w , U. ( w \ { z } ) , z ) ) ) = ( w e. { x e. ~P D | x ~~ 2o } |-> ( z e. D |-> if ( z e. w , U. ( w \ { z } ) , z ) ) ) |
13 |
12
|
fnmpt |
|- ( A. w e. { x e. ~P D | x ~~ 2o } ( z e. D |-> if ( z e. w , U. ( w \ { z } ) , z ) ) e. _V -> ( w e. { x e. ~P D | x ~~ 2o } |-> ( z e. D |-> if ( z e. w , U. ( w \ { z } ) , z ) ) ) Fn { x e. ~P D | x ~~ 2o } ) |
14 |
11 13
|
syl |
|- ( D e. _V -> ( w e. { x e. ~P D | x ~~ 2o } |-> ( z e. D |-> if ( z e. w , U. ( w \ { z } ) , z ) ) ) Fn { x e. ~P D | x ~~ 2o } ) |
15 |
1
|
pmtrfval |
|- ( D e. _V -> T = ( w e. { x e. ~P D | x ~~ 2o } |-> ( z e. D |-> if ( z e. w , U. ( w \ { z } ) , z ) ) ) ) |
16 |
15
|
fneq1d |
|- ( D e. _V -> ( T Fn { x e. ~P D | x ~~ 2o } <-> ( w e. { x e. ~P D | x ~~ 2o } |-> ( z e. D |-> if ( z e. w , U. ( w \ { z } ) , z ) ) ) Fn { x e. ~P D | x ~~ 2o } ) ) |
17 |
14 16
|
mpbird |
|- ( D e. _V -> T Fn { x e. ~P D | x ~~ 2o } ) |
18 |
|
fvelrnb |
|- ( T Fn { x e. ~P D | x ~~ 2o } -> ( F e. ran T <-> E. y e. { x e. ~P D | x ~~ 2o } ( T ` y ) = F ) ) |
19 |
17 18
|
syl |
|- ( D e. _V -> ( F e. ran T <-> E. y e. { x e. ~P D | x ~~ 2o } ( T ` y ) = F ) ) |
20 |
2
|
eleq2i |
|- ( F e. R <-> F e. ran T ) |
21 |
|
breq1 |
|- ( x = y -> ( x ~~ 2o <-> y ~~ 2o ) ) |
22 |
21
|
rexrab |
|- ( E. y e. { x e. ~P D | x ~~ 2o } ( T ` y ) = F <-> E. y e. ~P D ( y ~~ 2o /\ ( T ` y ) = F ) ) |
23 |
22
|
bicomi |
|- ( E. y e. ~P D ( y ~~ 2o /\ ( T ` y ) = F ) <-> E. y e. { x e. ~P D | x ~~ 2o } ( T ` y ) = F ) |
24 |
19 20 23
|
3bitr4g |
|- ( D e. _V -> ( F e. R <-> E. y e. ~P D ( y ~~ 2o /\ ( T ` y ) = F ) ) ) |
25 |
|
elpwi |
|- ( y e. ~P D -> y C_ D ) |
26 |
|
simp1 |
|- ( ( D e. _V /\ y C_ D /\ y ~~ 2o ) -> D e. _V ) |
27 |
1
|
pmtrmvd |
|- ( ( D e. _V /\ y C_ D /\ y ~~ 2o ) -> dom ( ( T ` y ) \ _I ) = y ) |
28 |
|
simp2 |
|- ( ( D e. _V /\ y C_ D /\ y ~~ 2o ) -> y C_ D ) |
29 |
27 28
|
eqsstrd |
|- ( ( D e. _V /\ y C_ D /\ y ~~ 2o ) -> dom ( ( T ` y ) \ _I ) C_ D ) |
30 |
|
simp3 |
|- ( ( D e. _V /\ y C_ D /\ y ~~ 2o ) -> y ~~ 2o ) |
31 |
27 30
|
eqbrtrd |
|- ( ( D e. _V /\ y C_ D /\ y ~~ 2o ) -> dom ( ( T ` y ) \ _I ) ~~ 2o ) |
32 |
26 29 31
|
3jca |
|- ( ( D e. _V /\ y C_ D /\ y ~~ 2o ) -> ( D e. _V /\ dom ( ( T ` y ) \ _I ) C_ D /\ dom ( ( T ` y ) \ _I ) ~~ 2o ) ) |
33 |
27
|
eqcomd |
|- ( ( D e. _V /\ y C_ D /\ y ~~ 2o ) -> y = dom ( ( T ` y ) \ _I ) ) |
34 |
33
|
fveq2d |
|- ( ( D e. _V /\ y C_ D /\ y ~~ 2o ) -> ( T ` y ) = ( T ` dom ( ( T ` y ) \ _I ) ) ) |
35 |
32 34
|
jca |
|- ( ( D e. _V /\ y C_ D /\ y ~~ 2o ) -> ( ( D e. _V /\ dom ( ( T ` y ) \ _I ) C_ D /\ dom ( ( T ` y ) \ _I ) ~~ 2o ) /\ ( T ` y ) = ( T ` dom ( ( T ` y ) \ _I ) ) ) ) |
36 |
|
difeq1 |
|- ( ( T ` y ) = F -> ( ( T ` y ) \ _I ) = ( F \ _I ) ) |
37 |
36
|
dmeqd |
|- ( ( T ` y ) = F -> dom ( ( T ` y ) \ _I ) = dom ( F \ _I ) ) |
38 |
37 3
|
eqtr4di |
|- ( ( T ` y ) = F -> dom ( ( T ` y ) \ _I ) = P ) |
39 |
|
sseq1 |
|- ( dom ( ( T ` y ) \ _I ) = P -> ( dom ( ( T ` y ) \ _I ) C_ D <-> P C_ D ) ) |
40 |
|
breq1 |
|- ( dom ( ( T ` y ) \ _I ) = P -> ( dom ( ( T ` y ) \ _I ) ~~ 2o <-> P ~~ 2o ) ) |
41 |
39 40
|
3anbi23d |
|- ( dom ( ( T ` y ) \ _I ) = P -> ( ( D e. _V /\ dom ( ( T ` y ) \ _I ) C_ D /\ dom ( ( T ` y ) \ _I ) ~~ 2o ) <-> ( D e. _V /\ P C_ D /\ P ~~ 2o ) ) ) |
42 |
41
|
adantl |
|- ( ( ( T ` y ) = F /\ dom ( ( T ` y ) \ _I ) = P ) -> ( ( D e. _V /\ dom ( ( T ` y ) \ _I ) C_ D /\ dom ( ( T ` y ) \ _I ) ~~ 2o ) <-> ( D e. _V /\ P C_ D /\ P ~~ 2o ) ) ) |
43 |
|
simpl |
|- ( ( ( T ` y ) = F /\ dom ( ( T ` y ) \ _I ) = P ) -> ( T ` y ) = F ) |
44 |
|
fveq2 |
|- ( dom ( ( T ` y ) \ _I ) = P -> ( T ` dom ( ( T ` y ) \ _I ) ) = ( T ` P ) ) |
45 |
44
|
adantl |
|- ( ( ( T ` y ) = F /\ dom ( ( T ` y ) \ _I ) = P ) -> ( T ` dom ( ( T ` y ) \ _I ) ) = ( T ` P ) ) |
46 |
43 45
|
eqeq12d |
|- ( ( ( T ` y ) = F /\ dom ( ( T ` y ) \ _I ) = P ) -> ( ( T ` y ) = ( T ` dom ( ( T ` y ) \ _I ) ) <-> F = ( T ` P ) ) ) |
47 |
42 46
|
anbi12d |
|- ( ( ( T ` y ) = F /\ dom ( ( T ` y ) \ _I ) = P ) -> ( ( ( D e. _V /\ dom ( ( T ` y ) \ _I ) C_ D /\ dom ( ( T ` y ) \ _I ) ~~ 2o ) /\ ( T ` y ) = ( T ` dom ( ( T ` y ) \ _I ) ) ) <-> ( ( D e. _V /\ P C_ D /\ P ~~ 2o ) /\ F = ( T ` P ) ) ) ) |
48 |
38 47
|
mpdan |
|- ( ( T ` y ) = F -> ( ( ( D e. _V /\ dom ( ( T ` y ) \ _I ) C_ D /\ dom ( ( T ` y ) \ _I ) ~~ 2o ) /\ ( T ` y ) = ( T ` dom ( ( T ` y ) \ _I ) ) ) <-> ( ( D e. _V /\ P C_ D /\ P ~~ 2o ) /\ F = ( T ` P ) ) ) ) |
49 |
35 48
|
syl5ibcom |
|- ( ( D e. _V /\ y C_ D /\ y ~~ 2o ) -> ( ( T ` y ) = F -> ( ( D e. _V /\ P C_ D /\ P ~~ 2o ) /\ F = ( T ` P ) ) ) ) |
50 |
49
|
3exp |
|- ( D e. _V -> ( y C_ D -> ( y ~~ 2o -> ( ( T ` y ) = F -> ( ( D e. _V /\ P C_ D /\ P ~~ 2o ) /\ F = ( T ` P ) ) ) ) ) ) |
51 |
50
|
imp4a |
|- ( D e. _V -> ( y C_ D -> ( ( y ~~ 2o /\ ( T ` y ) = F ) -> ( ( D e. _V /\ P C_ D /\ P ~~ 2o ) /\ F = ( T ` P ) ) ) ) ) |
52 |
25 51
|
syl5 |
|- ( D e. _V -> ( y e. ~P D -> ( ( y ~~ 2o /\ ( T ` y ) = F ) -> ( ( D e. _V /\ P C_ D /\ P ~~ 2o ) /\ F = ( T ` P ) ) ) ) ) |
53 |
52
|
rexlimdv |
|- ( D e. _V -> ( E. y e. ~P D ( y ~~ 2o /\ ( T ` y ) = F ) -> ( ( D e. _V /\ P C_ D /\ P ~~ 2o ) /\ F = ( T ` P ) ) ) ) |
54 |
24 53
|
sylbid |
|- ( D e. _V -> ( F e. R -> ( ( D e. _V /\ P C_ D /\ P ~~ 2o ) /\ F = ( T ` P ) ) ) ) |
55 |
9 54
|
mpcom |
|- ( F e. R -> ( ( D e. _V /\ P C_ D /\ P ~~ 2o ) /\ F = ( T ` P ) ) ) |