| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmtridf1o.a |
|- ( ph -> A e. V ) |
| 2 |
|
pmtridf1o.x |
|- ( ph -> X e. A ) |
| 3 |
|
pmtridf1o.y |
|- ( ph -> Y e. A ) |
| 4 |
|
pmtridf1o.t |
|- T = if ( X = Y , ( _I |` A ) , ( ( pmTrsp ` A ) ` { X , Y } ) ) |
| 5 |
|
fvresi |
|- ( Y e. A -> ( ( _I |` A ) ` Y ) = Y ) |
| 6 |
3 5
|
syl |
|- ( ph -> ( ( _I |` A ) ` Y ) = Y ) |
| 7 |
6
|
adantr |
|- ( ( ph /\ X = Y ) -> ( ( _I |` A ) ` Y ) = Y ) |
| 8 |
|
simpr |
|- ( ( ph /\ X = Y ) -> X = Y ) |
| 9 |
8
|
iftrued |
|- ( ( ph /\ X = Y ) -> if ( X = Y , ( _I |` A ) , ( ( pmTrsp ` A ) ` { X , Y } ) ) = ( _I |` A ) ) |
| 10 |
4 9
|
eqtrid |
|- ( ( ph /\ X = Y ) -> T = ( _I |` A ) ) |
| 11 |
10
|
fveq1d |
|- ( ( ph /\ X = Y ) -> ( T ` Y ) = ( ( _I |` A ) ` Y ) ) |
| 12 |
7 11 8
|
3eqtr4d |
|- ( ( ph /\ X = Y ) -> ( T ` Y ) = X ) |
| 13 |
|
simpr |
|- ( ( ph /\ X =/= Y ) -> X =/= Y ) |
| 14 |
13
|
neneqd |
|- ( ( ph /\ X =/= Y ) -> -. X = Y ) |
| 15 |
14
|
iffalsed |
|- ( ( ph /\ X =/= Y ) -> if ( X = Y , ( _I |` A ) , ( ( pmTrsp ` A ) ` { X , Y } ) ) = ( ( pmTrsp ` A ) ` { X , Y } ) ) |
| 16 |
4 15
|
eqtrid |
|- ( ( ph /\ X =/= Y ) -> T = ( ( pmTrsp ` A ) ` { X , Y } ) ) |
| 17 |
16
|
fveq1d |
|- ( ( ph /\ X =/= Y ) -> ( T ` Y ) = ( ( ( pmTrsp ` A ) ` { X , Y } ) ` Y ) ) |
| 18 |
1
|
adantr |
|- ( ( ph /\ X =/= Y ) -> A e. V ) |
| 19 |
2
|
adantr |
|- ( ( ph /\ X =/= Y ) -> X e. A ) |
| 20 |
3
|
adantr |
|- ( ( ph /\ X =/= Y ) -> Y e. A ) |
| 21 |
|
eqid |
|- ( pmTrsp ` A ) = ( pmTrsp ` A ) |
| 22 |
21
|
pmtrprfv2 |
|- ( ( A e. V /\ ( X e. A /\ Y e. A /\ X =/= Y ) ) -> ( ( ( pmTrsp ` A ) ` { X , Y } ) ` Y ) = X ) |
| 23 |
18 19 20 13 22
|
syl13anc |
|- ( ( ph /\ X =/= Y ) -> ( ( ( pmTrsp ` A ) ` { X , Y } ) ` Y ) = X ) |
| 24 |
17 23
|
eqtrd |
|- ( ( ph /\ X =/= Y ) -> ( T ` Y ) = X ) |
| 25 |
12 24
|
pm2.61dane |
|- ( ph -> ( T ` Y ) = X ) |