Metamath Proof Explorer


Theorem pmtrmvd

Description: A transposition moves precisely the transposed points. (Contributed by Stefan O'Rear, 16-Aug-2015)

Ref Expression
Hypothesis pmtrfval.t
|- T = ( pmTrsp ` D )
Assertion pmtrmvd
|- ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> dom ( ( T ` P ) \ _I ) = P )

Proof

Step Hyp Ref Expression
1 pmtrfval.t
 |-  T = ( pmTrsp ` D )
2 1 pmtrf
 |-  ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> ( T ` P ) : D --> D )
3 ffn
 |-  ( ( T ` P ) : D --> D -> ( T ` P ) Fn D )
4 fndifnfp
 |-  ( ( T ` P ) Fn D -> dom ( ( T ` P ) \ _I ) = { z e. D | ( ( T ` P ) ` z ) =/= z } )
5 2 3 4 3syl
 |-  ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> dom ( ( T ` P ) \ _I ) = { z e. D | ( ( T ` P ) ` z ) =/= z } )
6 1 pmtrfv
 |-  ( ( ( D e. V /\ P C_ D /\ P ~~ 2o ) /\ z e. D ) -> ( ( T ` P ) ` z ) = if ( z e. P , U. ( P \ { z } ) , z ) )
7 6 neeq1d
 |-  ( ( ( D e. V /\ P C_ D /\ P ~~ 2o ) /\ z e. D ) -> ( ( ( T ` P ) ` z ) =/= z <-> if ( z e. P , U. ( P \ { z } ) , z ) =/= z ) )
8 iffalse
 |-  ( -. z e. P -> if ( z e. P , U. ( P \ { z } ) , z ) = z )
9 8 necon1ai
 |-  ( if ( z e. P , U. ( P \ { z } ) , z ) =/= z -> z e. P )
10 iftrue
 |-  ( z e. P -> if ( z e. P , U. ( P \ { z } ) , z ) = U. ( P \ { z } ) )
11 10 adantl
 |-  ( ( ( D e. V /\ P C_ D /\ P ~~ 2o ) /\ z e. P ) -> if ( z e. P , U. ( P \ { z } ) , z ) = U. ( P \ { z } ) )
12 1onn
 |-  1o e. _om
13 simpl3
 |-  ( ( ( D e. V /\ P C_ D /\ P ~~ 2o ) /\ z e. P ) -> P ~~ 2o )
14 df-2o
 |-  2o = suc 1o
15 13 14 breqtrdi
 |-  ( ( ( D e. V /\ P C_ D /\ P ~~ 2o ) /\ z e. P ) -> P ~~ suc 1o )
16 simpr
 |-  ( ( ( D e. V /\ P C_ D /\ P ~~ 2o ) /\ z e. P ) -> z e. P )
17 dif1en
 |-  ( ( 1o e. _om /\ P ~~ suc 1o /\ z e. P ) -> ( P \ { z } ) ~~ 1o )
18 12 15 16 17 mp3an2i
 |-  ( ( ( D e. V /\ P C_ D /\ P ~~ 2o ) /\ z e. P ) -> ( P \ { z } ) ~~ 1o )
19 en1uniel
 |-  ( ( P \ { z } ) ~~ 1o -> U. ( P \ { z } ) e. ( P \ { z } ) )
20 eldifsni
 |-  ( U. ( P \ { z } ) e. ( P \ { z } ) -> U. ( P \ { z } ) =/= z )
21 18 19 20 3syl
 |-  ( ( ( D e. V /\ P C_ D /\ P ~~ 2o ) /\ z e. P ) -> U. ( P \ { z } ) =/= z )
22 11 21 eqnetrd
 |-  ( ( ( D e. V /\ P C_ D /\ P ~~ 2o ) /\ z e. P ) -> if ( z e. P , U. ( P \ { z } ) , z ) =/= z )
23 22 ex
 |-  ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> ( z e. P -> if ( z e. P , U. ( P \ { z } ) , z ) =/= z ) )
24 9 23 impbid2
 |-  ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> ( if ( z e. P , U. ( P \ { z } ) , z ) =/= z <-> z e. P ) )
25 24 adantr
 |-  ( ( ( D e. V /\ P C_ D /\ P ~~ 2o ) /\ z e. D ) -> ( if ( z e. P , U. ( P \ { z } ) , z ) =/= z <-> z e. P ) )
26 7 25 bitrd
 |-  ( ( ( D e. V /\ P C_ D /\ P ~~ 2o ) /\ z e. D ) -> ( ( ( T ` P ) ` z ) =/= z <-> z e. P ) )
27 26 rabbidva
 |-  ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> { z e. D | ( ( T ` P ) ` z ) =/= z } = { z e. D | z e. P } )
28 incom
 |-  ( P i^i D ) = ( D i^i P )
29 dfin5
 |-  ( D i^i P ) = { z e. D | z e. P }
30 28 29 eqtri
 |-  ( P i^i D ) = { z e. D | z e. P }
31 27 30 eqtr4di
 |-  ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> { z e. D | ( ( T ` P ) ` z ) =/= z } = ( P i^i D ) )
32 simp2
 |-  ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> P C_ D )
33 df-ss
 |-  ( P C_ D <-> ( P i^i D ) = P )
34 32 33 sylib
 |-  ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> ( P i^i D ) = P )
35 5 31 34 3eqtrd
 |-  ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> dom ( ( T ` P ) \ _I ) = P )