| Step | Hyp | Ref | Expression | 
						
							| 1 |  | evpmodpmf1o.s |  |-  S = ( SymGrp ` D ) | 
						
							| 2 |  | evpmodpmf1o.p |  |-  P = ( Base ` S ) | 
						
							| 3 |  | pmtrodpm.t |  |-  T = ran ( pmTrsp ` D ) | 
						
							| 4 |  | simpl |  |-  ( ( D e. Fin /\ F e. T ) -> D e. Fin ) | 
						
							| 5 | 3 1 2 | symgtrf |  |-  T C_ P | 
						
							| 6 | 5 | sseli |  |-  ( F e. T -> F e. P ) | 
						
							| 7 | 6 | adantl |  |-  ( ( D e. Fin /\ F e. T ) -> F e. P ) | 
						
							| 8 |  | eqid |  |-  ( pmSgn ` D ) = ( pmSgn ` D ) | 
						
							| 9 | 1 3 8 | psgnpmtr |  |-  ( F e. T -> ( ( pmSgn ` D ) ` F ) = -u 1 ) | 
						
							| 10 | 9 | adantl |  |-  ( ( D e. Fin /\ F e. T ) -> ( ( pmSgn ` D ) ` F ) = -u 1 ) | 
						
							| 11 | 1 2 8 | psgnodpmr |  |-  ( ( D e. Fin /\ F e. P /\ ( ( pmSgn ` D ) ` F ) = -u 1 ) -> F e. ( P \ ( pmEven ` D ) ) ) | 
						
							| 12 | 4 7 10 11 | syl3anc |  |-  ( ( D e. Fin /\ F e. T ) -> F e. ( P \ ( pmEven ` D ) ) ) |