| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmtrrn.t |  |-  T = ( pmTrsp ` D ) | 
						
							| 2 |  | pmtrrn.r |  |-  R = ran T | 
						
							| 3 |  | eqid |  |-  dom ( F \ _I ) = dom ( F \ _I ) | 
						
							| 4 | 1 2 3 | pmtrfrn |  |-  ( F e. R -> ( ( D e. _V /\ dom ( F \ _I ) C_ D /\ dom ( F \ _I ) ~~ 2o ) /\ F = ( T ` dom ( F \ _I ) ) ) ) | 
						
							| 5 | 4 | simpld |  |-  ( F e. R -> ( D e. _V /\ dom ( F \ _I ) C_ D /\ dom ( F \ _I ) ~~ 2o ) ) | 
						
							| 6 | 5 | simp3d |  |-  ( F e. R -> dom ( F \ _I ) ~~ 2o ) | 
						
							| 7 |  | en2 |  |-  ( dom ( F \ _I ) ~~ 2o -> E. x E. y dom ( F \ _I ) = { x , y } ) | 
						
							| 8 | 6 7 | syl |  |-  ( F e. R -> E. x E. y dom ( F \ _I ) = { x , y } ) | 
						
							| 9 | 5 | simp2d |  |-  ( F e. R -> dom ( F \ _I ) C_ D ) | 
						
							| 10 | 4 | simprd |  |-  ( F e. R -> F = ( T ` dom ( F \ _I ) ) ) | 
						
							| 11 | 9 6 10 | jca32 |  |-  ( F e. R -> ( dom ( F \ _I ) C_ D /\ ( dom ( F \ _I ) ~~ 2o /\ F = ( T ` dom ( F \ _I ) ) ) ) ) | 
						
							| 12 |  | sseq1 |  |-  ( dom ( F \ _I ) = { x , y } -> ( dom ( F \ _I ) C_ D <-> { x , y } C_ D ) ) | 
						
							| 13 |  | breq1 |  |-  ( dom ( F \ _I ) = { x , y } -> ( dom ( F \ _I ) ~~ 2o <-> { x , y } ~~ 2o ) ) | 
						
							| 14 |  | fveq2 |  |-  ( dom ( F \ _I ) = { x , y } -> ( T ` dom ( F \ _I ) ) = ( T ` { x , y } ) ) | 
						
							| 15 | 14 | eqeq2d |  |-  ( dom ( F \ _I ) = { x , y } -> ( F = ( T ` dom ( F \ _I ) ) <-> F = ( T ` { x , y } ) ) ) | 
						
							| 16 | 13 15 | anbi12d |  |-  ( dom ( F \ _I ) = { x , y } -> ( ( dom ( F \ _I ) ~~ 2o /\ F = ( T ` dom ( F \ _I ) ) ) <-> ( { x , y } ~~ 2o /\ F = ( T ` { x , y } ) ) ) ) | 
						
							| 17 | 12 16 | anbi12d |  |-  ( dom ( F \ _I ) = { x , y } -> ( ( dom ( F \ _I ) C_ D /\ ( dom ( F \ _I ) ~~ 2o /\ F = ( T ` dom ( F \ _I ) ) ) ) <-> ( { x , y } C_ D /\ ( { x , y } ~~ 2o /\ F = ( T ` { x , y } ) ) ) ) ) | 
						
							| 18 | 11 17 | syl5ibcom |  |-  ( F e. R -> ( dom ( F \ _I ) = { x , y } -> ( { x , y } C_ D /\ ( { x , y } ~~ 2o /\ F = ( T ` { x , y } ) ) ) ) ) | 
						
							| 19 |  | vex |  |-  x e. _V | 
						
							| 20 |  | vex |  |-  y e. _V | 
						
							| 21 | 19 20 | prss |  |-  ( ( x e. D /\ y e. D ) <-> { x , y } C_ D ) | 
						
							| 22 | 21 | bicomi |  |-  ( { x , y } C_ D <-> ( x e. D /\ y e. D ) ) | 
						
							| 23 |  | pr2ne |  |-  ( ( x e. _V /\ y e. _V ) -> ( { x , y } ~~ 2o <-> x =/= y ) ) | 
						
							| 24 | 23 | el2v |  |-  ( { x , y } ~~ 2o <-> x =/= y ) | 
						
							| 25 | 24 | anbi1i |  |-  ( ( { x , y } ~~ 2o /\ F = ( T ` { x , y } ) ) <-> ( x =/= y /\ F = ( T ` { x , y } ) ) ) | 
						
							| 26 | 22 25 | anbi12i |  |-  ( ( { x , y } C_ D /\ ( { x , y } ~~ 2o /\ F = ( T ` { x , y } ) ) ) <-> ( ( x e. D /\ y e. D ) /\ ( x =/= y /\ F = ( T ` { x , y } ) ) ) ) | 
						
							| 27 | 18 26 | imbitrdi |  |-  ( F e. R -> ( dom ( F \ _I ) = { x , y } -> ( ( x e. D /\ y e. D ) /\ ( x =/= y /\ F = ( T ` { x , y } ) ) ) ) ) | 
						
							| 28 | 27 | 2eximdv |  |-  ( F e. R -> ( E. x E. y dom ( F \ _I ) = { x , y } -> E. x E. y ( ( x e. D /\ y e. D ) /\ ( x =/= y /\ F = ( T ` { x , y } ) ) ) ) ) | 
						
							| 29 | 8 28 | mpd |  |-  ( F e. R -> E. x E. y ( ( x e. D /\ y e. D ) /\ ( x =/= y /\ F = ( T ` { x , y } ) ) ) ) | 
						
							| 30 |  | r2ex |  |-  ( E. x e. D E. y e. D ( x =/= y /\ F = ( T ` { x , y } ) ) <-> E. x E. y ( ( x e. D /\ y e. D ) /\ ( x =/= y /\ F = ( T ` { x , y } ) ) ) ) | 
						
							| 31 | 29 30 | sylibr |  |-  ( F e. R -> E. x e. D E. y e. D ( x =/= y /\ F = ( T ` { x , y } ) ) ) |