Step |
Hyp |
Ref |
Expression |
1 |
|
1idsr |
|- ( A e. R. -> ( A .R 1R ) = A ) |
2 |
1
|
oveq1d |
|- ( A e. R. -> ( ( A .R 1R ) +R ( A .R -1R ) ) = ( A +R ( A .R -1R ) ) ) |
3 |
|
distrsr |
|- ( A .R ( -1R +R 1R ) ) = ( ( A .R -1R ) +R ( A .R 1R ) ) |
4 |
|
m1p1sr |
|- ( -1R +R 1R ) = 0R |
5 |
4
|
oveq2i |
|- ( A .R ( -1R +R 1R ) ) = ( A .R 0R ) |
6 |
|
addcomsr |
|- ( ( A .R -1R ) +R ( A .R 1R ) ) = ( ( A .R 1R ) +R ( A .R -1R ) ) |
7 |
3 5 6
|
3eqtr3i |
|- ( A .R 0R ) = ( ( A .R 1R ) +R ( A .R -1R ) ) |
8 |
|
00sr |
|- ( A e. R. -> ( A .R 0R ) = 0R ) |
9 |
7 8
|
eqtr3id |
|- ( A e. R. -> ( ( A .R 1R ) +R ( A .R -1R ) ) = 0R ) |
10 |
2 9
|
eqtr3d |
|- ( A e. R. -> ( A +R ( A .R -1R ) ) = 0R ) |