Description: Cancellation law for subtraction. (Contributed by NM, 17-Apr-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pncan2 | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) - A ) = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcom | |- ( ( B e. CC /\ A e. CC ) -> ( B + A ) = ( A + B ) ) |
|
| 2 | 1 | oveq1d | |- ( ( B e. CC /\ A e. CC ) -> ( ( B + A ) - A ) = ( ( A + B ) - A ) ) |
| 3 | pncan | |- ( ( B e. CC /\ A e. CC ) -> ( ( B + A ) - A ) = B ) |
|
| 4 | 2 3 | eqtr3d | |- ( ( B e. CC /\ A e. CC ) -> ( ( A + B ) - A ) = B ) |
| 5 | 4 | ancoms | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) - A ) = B ) |