Metamath Proof Explorer


Theorem pncan2s

Description: Cancellation law for surreal subtraction. (Contributed by Scott Fenton, 16-Apr-2025)

Ref Expression
Assertion pncan2s
|- ( ( A e. No /\ B e. No ) -> ( ( A +s B ) -s A ) = B )

Proof

Step Hyp Ref Expression
1 eqid
 |-  ( A +s B ) = ( A +s B )
2 addscl
 |-  ( ( A e. No /\ B e. No ) -> ( A +s B ) e. No )
3 simpl
 |-  ( ( A e. No /\ B e. No ) -> A e. No )
4 simpr
 |-  ( ( A e. No /\ B e. No ) -> B e. No )
5 2 3 4 subaddsd
 |-  ( ( A e. No /\ B e. No ) -> ( ( ( A +s B ) -s A ) = B <-> ( A +s B ) = ( A +s B ) ) )
6 1 5 mpbiri
 |-  ( ( A e. No /\ B e. No ) -> ( ( A +s B ) -s A ) = B )