Description: Subtraction and addition of equals. (Contributed by NM, 14-Mar-2005) (Proof shortened by Steven Nguyen, 8-Jan-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pncan3 | |- ( ( A e. CC /\ B e. CC ) -> ( A + ( B - A ) ) = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subcl | |- ( ( B e. CC /\ A e. CC ) -> ( B - A ) e. CC ) |
|
| 2 | eqid | |- ( B - A ) = ( B - A ) |
|
| 3 | subadd | |- ( ( B e. CC /\ A e. CC /\ ( B - A ) e. CC ) -> ( ( B - A ) = ( B - A ) <-> ( A + ( B - A ) ) = B ) ) |
|
| 4 | 2 3 | mpbii | |- ( ( B e. CC /\ A e. CC /\ ( B - A ) e. CC ) -> ( A + ( B - A ) ) = B ) |
| 5 | 1 4 | mpd3an3 | |- ( ( B e. CC /\ A e. CC ) -> ( A + ( B - A ) ) = B ) |
| 6 | 5 | ancoms | |- ( ( A e. CC /\ B e. CC ) -> ( A + ( B - A ) ) = B ) |