Description: Subtraction and addition of equals. (Contributed by Scott Fenton, 4-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pncan3s | |- ( ( A e. No /\ B e. No ) -> ( A +s ( B -s A ) ) = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( B -s A ) = ( B -s A ) |
|
| 2 | simpr | |- ( ( A e. No /\ B e. No ) -> B e. No ) |
|
| 3 | simpl | |- ( ( A e. No /\ B e. No ) -> A e. No ) |
|
| 4 | 2 3 | subscld | |- ( ( A e. No /\ B e. No ) -> ( B -s A ) e. No ) |
| 5 | 2 3 4 | subaddsd | |- ( ( A e. No /\ B e. No ) -> ( ( B -s A ) = ( B -s A ) <-> ( A +s ( B -s A ) ) = B ) ) |
| 6 | 1 5 | mpbii | |- ( ( A e. No /\ B e. No ) -> ( A +s ( B -s A ) ) = B ) |