Description: Cancellation law for surreal subtraction. (Contributed by Scott Fenton, 4-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pncans | |- ( ( A e. No /\ B e. No ) -> ( ( A +s B ) -s B ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addscom | |- ( ( A e. No /\ B e. No ) -> ( A +s B ) = ( B +s A ) ) |
|
| 2 | 1 | eqcomd | |- ( ( A e. No /\ B e. No ) -> ( B +s A ) = ( A +s B ) ) |
| 3 | addscl | |- ( ( A e. No /\ B e. No ) -> ( A +s B ) e. No ) |
|
| 4 | simpr | |- ( ( A e. No /\ B e. No ) -> B e. No ) |
|
| 5 | simpl | |- ( ( A e. No /\ B e. No ) -> A e. No ) |
|
| 6 | 3 4 5 | subaddsd | |- ( ( A e. No /\ B e. No ) -> ( ( ( A +s B ) -s B ) = A <-> ( B +s A ) = ( A +s B ) ) ) |
| 7 | 2 6 | mpbird | |- ( ( A e. No /\ B e. No ) -> ( ( A +s B ) -s B ) = A ) |