Metamath Proof Explorer


Theorem pnfneige0

Description: A neighborhood of +oo contains an unbounded interval based at a real number. See pnfnei . (Contributed by Thierry Arnoux, 31-Jul-2017)

Ref Expression
Hypothesis pnfneige0.j
|- J = ( TopOpen ` ( RR*s |`s ( 0 [,] +oo ) ) )
Assertion pnfneige0
|- ( ( A e. J /\ +oo e. A ) -> E. x e. RR ( x (,] +oo ) C_ A )

Proof

Step Hyp Ref Expression
1 pnfneige0.j
 |-  J = ( TopOpen ` ( RR*s |`s ( 0 [,] +oo ) ) )
2 0red
 |-  ( ( ( ( ( A e. J /\ +oo e. A ) /\ y e. RR ) /\ ( y (,] +oo ) C_ ( A i^i ( 0 (,] +oo ) ) ) /\ y < 0 ) -> 0 e. RR )
3 simpllr
 |-  ( ( ( ( ( A e. J /\ +oo e. A ) /\ y e. RR ) /\ ( y (,] +oo ) C_ ( A i^i ( 0 (,] +oo ) ) ) /\ -. y < 0 ) -> y e. RR )
4 2 3 ifclda
 |-  ( ( ( ( A e. J /\ +oo e. A ) /\ y e. RR ) /\ ( y (,] +oo ) C_ ( A i^i ( 0 (,] +oo ) ) ) -> if ( y < 0 , 0 , y ) e. RR )
5 ovif
 |-  ( if ( y < 0 , 0 , y ) (,] +oo ) = if ( y < 0 , ( 0 (,] +oo ) , ( y (,] +oo ) )
6 rexr
 |-  ( y e. RR -> y e. RR* )
7 0xr
 |-  0 e. RR*
8 7 a1i
 |-  ( y e. RR -> 0 e. RR* )
9 pnfxr
 |-  +oo e. RR*
10 9 a1i
 |-  ( y e. RR -> +oo e. RR* )
11 iocinif
 |-  ( ( y e. RR* /\ 0 e. RR* /\ +oo e. RR* ) -> ( ( y (,] +oo ) i^i ( 0 (,] +oo ) ) = if ( y < 0 , ( 0 (,] +oo ) , ( y (,] +oo ) ) )
12 6 8 10 11 syl3anc
 |-  ( y e. RR -> ( ( y (,] +oo ) i^i ( 0 (,] +oo ) ) = if ( y < 0 , ( 0 (,] +oo ) , ( y (,] +oo ) ) )
13 5 12 eqtr4id
 |-  ( y e. RR -> ( if ( y < 0 , 0 , y ) (,] +oo ) = ( ( y (,] +oo ) i^i ( 0 (,] +oo ) ) )
14 13 ad2antlr
 |-  ( ( ( ( A e. J /\ +oo e. A ) /\ y e. RR ) /\ ( y (,] +oo ) C_ ( A i^i ( 0 (,] +oo ) ) ) -> ( if ( y < 0 , 0 , y ) (,] +oo ) = ( ( y (,] +oo ) i^i ( 0 (,] +oo ) ) )
15 iocssicc
 |-  ( 0 (,] +oo ) C_ ( 0 [,] +oo )
16 sslin
 |-  ( ( 0 (,] +oo ) C_ ( 0 [,] +oo ) -> ( ( y (,] +oo ) i^i ( 0 (,] +oo ) ) C_ ( ( y (,] +oo ) i^i ( 0 [,] +oo ) ) )
17 15 16 mp1i
 |-  ( ( ( ( A e. J /\ +oo e. A ) /\ y e. RR ) /\ ( y (,] +oo ) C_ ( A i^i ( 0 (,] +oo ) ) ) -> ( ( y (,] +oo ) i^i ( 0 (,] +oo ) ) C_ ( ( y (,] +oo ) i^i ( 0 [,] +oo ) ) )
18 simpr
 |-  ( ( ( ( A e. J /\ +oo e. A ) /\ y e. RR ) /\ ( y (,] +oo ) C_ ( A i^i ( 0 (,] +oo ) ) ) -> ( y (,] +oo ) C_ ( A i^i ( 0 (,] +oo ) ) )
19 ssin
 |-  ( ( ( y (,] +oo ) C_ A /\ ( y (,] +oo ) C_ ( 0 (,] +oo ) ) <-> ( y (,] +oo ) C_ ( A i^i ( 0 (,] +oo ) ) )
20 19 biimpri
 |-  ( ( y (,] +oo ) C_ ( A i^i ( 0 (,] +oo ) ) -> ( ( y (,] +oo ) C_ A /\ ( y (,] +oo ) C_ ( 0 (,] +oo ) ) )
21 20 simpld
 |-  ( ( y (,] +oo ) C_ ( A i^i ( 0 (,] +oo ) ) -> ( y (,] +oo ) C_ A )
22 ssinss1
 |-  ( ( y (,] +oo ) C_ A -> ( ( y (,] +oo ) i^i ( 0 [,] +oo ) ) C_ A )
23 18 21 22 3syl
 |-  ( ( ( ( A e. J /\ +oo e. A ) /\ y e. RR ) /\ ( y (,] +oo ) C_ ( A i^i ( 0 (,] +oo ) ) ) -> ( ( y (,] +oo ) i^i ( 0 [,] +oo ) ) C_ A )
24 17 23 sstrd
 |-  ( ( ( ( A e. J /\ +oo e. A ) /\ y e. RR ) /\ ( y (,] +oo ) C_ ( A i^i ( 0 (,] +oo ) ) ) -> ( ( y (,] +oo ) i^i ( 0 (,] +oo ) ) C_ A )
25 14 24 eqsstrd
 |-  ( ( ( ( A e. J /\ +oo e. A ) /\ y e. RR ) /\ ( y (,] +oo ) C_ ( A i^i ( 0 (,] +oo ) ) ) -> ( if ( y < 0 , 0 , y ) (,] +oo ) C_ A )
26 oveq1
 |-  ( x = if ( y < 0 , 0 , y ) -> ( x (,] +oo ) = ( if ( y < 0 , 0 , y ) (,] +oo ) )
27 26 sseq1d
 |-  ( x = if ( y < 0 , 0 , y ) -> ( ( x (,] +oo ) C_ A <-> ( if ( y < 0 , 0 , y ) (,] +oo ) C_ A ) )
28 27 rspcev
 |-  ( ( if ( y < 0 , 0 , y ) e. RR /\ ( if ( y < 0 , 0 , y ) (,] +oo ) C_ A ) -> E. x e. RR ( x (,] +oo ) C_ A )
29 4 25 28 syl2anc
 |-  ( ( ( ( A e. J /\ +oo e. A ) /\ y e. RR ) /\ ( y (,] +oo ) C_ ( A i^i ( 0 (,] +oo ) ) ) -> E. x e. RR ( x (,] +oo ) C_ A )
30 letopon
 |-  ( ordTop ` <_ ) e. ( TopOn ` RR* )
31 iccssxr
 |-  ( 0 [,] +oo ) C_ RR*
32 resttopon
 |-  ( ( ( ordTop ` <_ ) e. ( TopOn ` RR* ) /\ ( 0 [,] +oo ) C_ RR* ) -> ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) e. ( TopOn ` ( 0 [,] +oo ) ) )
33 30 31 32 mp2an
 |-  ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) e. ( TopOn ` ( 0 [,] +oo ) )
34 33 topontopi
 |-  ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) e. Top
35 34 a1i
 |-  ( A e. J -> ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) e. Top )
36 ovex
 |-  ( 0 (,] +oo ) e. _V
37 36 a1i
 |-  ( A e. J -> ( 0 (,] +oo ) e. _V )
38 xrge0topn
 |-  ( TopOpen ` ( RR*s |`s ( 0 [,] +oo ) ) ) = ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) )
39 1 38 eqtri
 |-  J = ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) )
40 39 eleq2i
 |-  ( A e. J <-> A e. ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) )
41 40 biimpi
 |-  ( A e. J -> A e. ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) )
42 elrestr
 |-  ( ( ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) e. Top /\ ( 0 (,] +oo ) e. _V /\ A e. ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) ) -> ( A i^i ( 0 (,] +oo ) ) e. ( ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) |`t ( 0 (,] +oo ) ) )
43 35 37 41 42 syl3anc
 |-  ( A e. J -> ( A i^i ( 0 (,] +oo ) ) e. ( ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) |`t ( 0 (,] +oo ) ) )
44 letop
 |-  ( ordTop ` <_ ) e. Top
45 ovex
 |-  ( 0 [,] +oo ) e. _V
46 restabs
 |-  ( ( ( ordTop ` <_ ) e. Top /\ ( 0 (,] +oo ) C_ ( 0 [,] +oo ) /\ ( 0 [,] +oo ) e. _V ) -> ( ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) |`t ( 0 (,] +oo ) ) = ( ( ordTop ` <_ ) |`t ( 0 (,] +oo ) ) )
47 44 15 45 46 mp3an
 |-  ( ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) |`t ( 0 (,] +oo ) ) = ( ( ordTop ` <_ ) |`t ( 0 (,] +oo ) )
48 43 47 eleqtrdi
 |-  ( A e. J -> ( A i^i ( 0 (,] +oo ) ) e. ( ( ordTop ` <_ ) |`t ( 0 (,] +oo ) ) )
49 44 a1i
 |-  ( A e. J -> ( ordTop ` <_ ) e. Top )
50 iocpnfordt
 |-  ( 0 (,] +oo ) e. ( ordTop ` <_ )
51 50 a1i
 |-  ( A e. J -> ( 0 (,] +oo ) e. ( ordTop ` <_ ) )
52 ssidd
 |-  ( A e. J -> ( 0 (,] +oo ) C_ ( 0 (,] +oo ) )
53 inss2
 |-  ( A i^i ( 0 (,] +oo ) ) C_ ( 0 (,] +oo )
54 53 a1i
 |-  ( A e. J -> ( A i^i ( 0 (,] +oo ) ) C_ ( 0 (,] +oo ) )
55 restopnb
 |-  ( ( ( ( ordTop ` <_ ) e. Top /\ ( 0 (,] +oo ) e. _V ) /\ ( ( 0 (,] +oo ) e. ( ordTop ` <_ ) /\ ( 0 (,] +oo ) C_ ( 0 (,] +oo ) /\ ( A i^i ( 0 (,] +oo ) ) C_ ( 0 (,] +oo ) ) ) -> ( ( A i^i ( 0 (,] +oo ) ) e. ( ordTop ` <_ ) <-> ( A i^i ( 0 (,] +oo ) ) e. ( ( ordTop ` <_ ) |`t ( 0 (,] +oo ) ) ) )
56 49 37 51 52 54 55 syl23anc
 |-  ( A e. J -> ( ( A i^i ( 0 (,] +oo ) ) e. ( ordTop ` <_ ) <-> ( A i^i ( 0 (,] +oo ) ) e. ( ( ordTop ` <_ ) |`t ( 0 (,] +oo ) ) ) )
57 48 56 mpbird
 |-  ( A e. J -> ( A i^i ( 0 (,] +oo ) ) e. ( ordTop ` <_ ) )
58 57 adantr
 |-  ( ( A e. J /\ +oo e. A ) -> ( A i^i ( 0 (,] +oo ) ) e. ( ordTop ` <_ ) )
59 simpr
 |-  ( ( A e. J /\ +oo e. A ) -> +oo e. A )
60 0ltpnf
 |-  0 < +oo
61 ubioc1
 |-  ( ( 0 e. RR* /\ +oo e. RR* /\ 0 < +oo ) -> +oo e. ( 0 (,] +oo ) )
62 7 9 60 61 mp3an
 |-  +oo e. ( 0 (,] +oo )
63 62 a1i
 |-  ( ( A e. J /\ +oo e. A ) -> +oo e. ( 0 (,] +oo ) )
64 59 63 elind
 |-  ( ( A e. J /\ +oo e. A ) -> +oo e. ( A i^i ( 0 (,] +oo ) ) )
65 pnfnei
 |-  ( ( ( A i^i ( 0 (,] +oo ) ) e. ( ordTop ` <_ ) /\ +oo e. ( A i^i ( 0 (,] +oo ) ) ) -> E. y e. RR ( y (,] +oo ) C_ ( A i^i ( 0 (,] +oo ) ) )
66 58 64 65 syl2anc
 |-  ( ( A e. J /\ +oo e. A ) -> E. y e. RR ( y (,] +oo ) C_ ( A i^i ( 0 (,] +oo ) ) )
67 29 66 r19.29a
 |-  ( ( A e. J /\ +oo e. A ) -> E. x e. RR ( x (,] +oo ) C_ A )