Step |
Hyp |
Ref |
Expression |
1 |
|
pnfneige0.j |
|- J = ( TopOpen ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
2 |
|
0red |
|- ( ( ( ( ( A e. J /\ +oo e. A ) /\ y e. RR ) /\ ( y (,] +oo ) C_ ( A i^i ( 0 (,] +oo ) ) ) /\ y < 0 ) -> 0 e. RR ) |
3 |
|
simpllr |
|- ( ( ( ( ( A e. J /\ +oo e. A ) /\ y e. RR ) /\ ( y (,] +oo ) C_ ( A i^i ( 0 (,] +oo ) ) ) /\ -. y < 0 ) -> y e. RR ) |
4 |
2 3
|
ifclda |
|- ( ( ( ( A e. J /\ +oo e. A ) /\ y e. RR ) /\ ( y (,] +oo ) C_ ( A i^i ( 0 (,] +oo ) ) ) -> if ( y < 0 , 0 , y ) e. RR ) |
5 |
|
ovif |
|- ( if ( y < 0 , 0 , y ) (,] +oo ) = if ( y < 0 , ( 0 (,] +oo ) , ( y (,] +oo ) ) |
6 |
|
rexr |
|- ( y e. RR -> y e. RR* ) |
7 |
|
0xr |
|- 0 e. RR* |
8 |
7
|
a1i |
|- ( y e. RR -> 0 e. RR* ) |
9 |
|
pnfxr |
|- +oo e. RR* |
10 |
9
|
a1i |
|- ( y e. RR -> +oo e. RR* ) |
11 |
|
iocinif |
|- ( ( y e. RR* /\ 0 e. RR* /\ +oo e. RR* ) -> ( ( y (,] +oo ) i^i ( 0 (,] +oo ) ) = if ( y < 0 , ( 0 (,] +oo ) , ( y (,] +oo ) ) ) |
12 |
6 8 10 11
|
syl3anc |
|- ( y e. RR -> ( ( y (,] +oo ) i^i ( 0 (,] +oo ) ) = if ( y < 0 , ( 0 (,] +oo ) , ( y (,] +oo ) ) ) |
13 |
5 12
|
eqtr4id |
|- ( y e. RR -> ( if ( y < 0 , 0 , y ) (,] +oo ) = ( ( y (,] +oo ) i^i ( 0 (,] +oo ) ) ) |
14 |
13
|
ad2antlr |
|- ( ( ( ( A e. J /\ +oo e. A ) /\ y e. RR ) /\ ( y (,] +oo ) C_ ( A i^i ( 0 (,] +oo ) ) ) -> ( if ( y < 0 , 0 , y ) (,] +oo ) = ( ( y (,] +oo ) i^i ( 0 (,] +oo ) ) ) |
15 |
|
iocssicc |
|- ( 0 (,] +oo ) C_ ( 0 [,] +oo ) |
16 |
|
sslin |
|- ( ( 0 (,] +oo ) C_ ( 0 [,] +oo ) -> ( ( y (,] +oo ) i^i ( 0 (,] +oo ) ) C_ ( ( y (,] +oo ) i^i ( 0 [,] +oo ) ) ) |
17 |
15 16
|
mp1i |
|- ( ( ( ( A e. J /\ +oo e. A ) /\ y e. RR ) /\ ( y (,] +oo ) C_ ( A i^i ( 0 (,] +oo ) ) ) -> ( ( y (,] +oo ) i^i ( 0 (,] +oo ) ) C_ ( ( y (,] +oo ) i^i ( 0 [,] +oo ) ) ) |
18 |
|
simpr |
|- ( ( ( ( A e. J /\ +oo e. A ) /\ y e. RR ) /\ ( y (,] +oo ) C_ ( A i^i ( 0 (,] +oo ) ) ) -> ( y (,] +oo ) C_ ( A i^i ( 0 (,] +oo ) ) ) |
19 |
|
ssin |
|- ( ( ( y (,] +oo ) C_ A /\ ( y (,] +oo ) C_ ( 0 (,] +oo ) ) <-> ( y (,] +oo ) C_ ( A i^i ( 0 (,] +oo ) ) ) |
20 |
19
|
biimpri |
|- ( ( y (,] +oo ) C_ ( A i^i ( 0 (,] +oo ) ) -> ( ( y (,] +oo ) C_ A /\ ( y (,] +oo ) C_ ( 0 (,] +oo ) ) ) |
21 |
20
|
simpld |
|- ( ( y (,] +oo ) C_ ( A i^i ( 0 (,] +oo ) ) -> ( y (,] +oo ) C_ A ) |
22 |
|
ssinss1 |
|- ( ( y (,] +oo ) C_ A -> ( ( y (,] +oo ) i^i ( 0 [,] +oo ) ) C_ A ) |
23 |
18 21 22
|
3syl |
|- ( ( ( ( A e. J /\ +oo e. A ) /\ y e. RR ) /\ ( y (,] +oo ) C_ ( A i^i ( 0 (,] +oo ) ) ) -> ( ( y (,] +oo ) i^i ( 0 [,] +oo ) ) C_ A ) |
24 |
17 23
|
sstrd |
|- ( ( ( ( A e. J /\ +oo e. A ) /\ y e. RR ) /\ ( y (,] +oo ) C_ ( A i^i ( 0 (,] +oo ) ) ) -> ( ( y (,] +oo ) i^i ( 0 (,] +oo ) ) C_ A ) |
25 |
14 24
|
eqsstrd |
|- ( ( ( ( A e. J /\ +oo e. A ) /\ y e. RR ) /\ ( y (,] +oo ) C_ ( A i^i ( 0 (,] +oo ) ) ) -> ( if ( y < 0 , 0 , y ) (,] +oo ) C_ A ) |
26 |
|
oveq1 |
|- ( x = if ( y < 0 , 0 , y ) -> ( x (,] +oo ) = ( if ( y < 0 , 0 , y ) (,] +oo ) ) |
27 |
26
|
sseq1d |
|- ( x = if ( y < 0 , 0 , y ) -> ( ( x (,] +oo ) C_ A <-> ( if ( y < 0 , 0 , y ) (,] +oo ) C_ A ) ) |
28 |
27
|
rspcev |
|- ( ( if ( y < 0 , 0 , y ) e. RR /\ ( if ( y < 0 , 0 , y ) (,] +oo ) C_ A ) -> E. x e. RR ( x (,] +oo ) C_ A ) |
29 |
4 25 28
|
syl2anc |
|- ( ( ( ( A e. J /\ +oo e. A ) /\ y e. RR ) /\ ( y (,] +oo ) C_ ( A i^i ( 0 (,] +oo ) ) ) -> E. x e. RR ( x (,] +oo ) C_ A ) |
30 |
|
letopon |
|- ( ordTop ` <_ ) e. ( TopOn ` RR* ) |
31 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
32 |
|
resttopon |
|- ( ( ( ordTop ` <_ ) e. ( TopOn ` RR* ) /\ ( 0 [,] +oo ) C_ RR* ) -> ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) e. ( TopOn ` ( 0 [,] +oo ) ) ) |
33 |
30 31 32
|
mp2an |
|- ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) e. ( TopOn ` ( 0 [,] +oo ) ) |
34 |
33
|
topontopi |
|- ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) e. Top |
35 |
34
|
a1i |
|- ( A e. J -> ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) e. Top ) |
36 |
|
ovex |
|- ( 0 (,] +oo ) e. _V |
37 |
36
|
a1i |
|- ( A e. J -> ( 0 (,] +oo ) e. _V ) |
38 |
|
xrge0topn |
|- ( TopOpen ` ( RR*s |`s ( 0 [,] +oo ) ) ) = ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) |
39 |
1 38
|
eqtri |
|- J = ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) |
40 |
39
|
eleq2i |
|- ( A e. J <-> A e. ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) ) |
41 |
40
|
biimpi |
|- ( A e. J -> A e. ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) ) |
42 |
|
elrestr |
|- ( ( ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) e. Top /\ ( 0 (,] +oo ) e. _V /\ A e. ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) ) -> ( A i^i ( 0 (,] +oo ) ) e. ( ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) |`t ( 0 (,] +oo ) ) ) |
43 |
35 37 41 42
|
syl3anc |
|- ( A e. J -> ( A i^i ( 0 (,] +oo ) ) e. ( ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) |`t ( 0 (,] +oo ) ) ) |
44 |
|
letop |
|- ( ordTop ` <_ ) e. Top |
45 |
|
ovex |
|- ( 0 [,] +oo ) e. _V |
46 |
|
restabs |
|- ( ( ( ordTop ` <_ ) e. Top /\ ( 0 (,] +oo ) C_ ( 0 [,] +oo ) /\ ( 0 [,] +oo ) e. _V ) -> ( ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) |`t ( 0 (,] +oo ) ) = ( ( ordTop ` <_ ) |`t ( 0 (,] +oo ) ) ) |
47 |
44 15 45 46
|
mp3an |
|- ( ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) |`t ( 0 (,] +oo ) ) = ( ( ordTop ` <_ ) |`t ( 0 (,] +oo ) ) |
48 |
43 47
|
eleqtrdi |
|- ( A e. J -> ( A i^i ( 0 (,] +oo ) ) e. ( ( ordTop ` <_ ) |`t ( 0 (,] +oo ) ) ) |
49 |
44
|
a1i |
|- ( A e. J -> ( ordTop ` <_ ) e. Top ) |
50 |
|
iocpnfordt |
|- ( 0 (,] +oo ) e. ( ordTop ` <_ ) |
51 |
50
|
a1i |
|- ( A e. J -> ( 0 (,] +oo ) e. ( ordTop ` <_ ) ) |
52 |
|
ssidd |
|- ( A e. J -> ( 0 (,] +oo ) C_ ( 0 (,] +oo ) ) |
53 |
|
inss2 |
|- ( A i^i ( 0 (,] +oo ) ) C_ ( 0 (,] +oo ) |
54 |
53
|
a1i |
|- ( A e. J -> ( A i^i ( 0 (,] +oo ) ) C_ ( 0 (,] +oo ) ) |
55 |
|
restopnb |
|- ( ( ( ( ordTop ` <_ ) e. Top /\ ( 0 (,] +oo ) e. _V ) /\ ( ( 0 (,] +oo ) e. ( ordTop ` <_ ) /\ ( 0 (,] +oo ) C_ ( 0 (,] +oo ) /\ ( A i^i ( 0 (,] +oo ) ) C_ ( 0 (,] +oo ) ) ) -> ( ( A i^i ( 0 (,] +oo ) ) e. ( ordTop ` <_ ) <-> ( A i^i ( 0 (,] +oo ) ) e. ( ( ordTop ` <_ ) |`t ( 0 (,] +oo ) ) ) ) |
56 |
49 37 51 52 54 55
|
syl23anc |
|- ( A e. J -> ( ( A i^i ( 0 (,] +oo ) ) e. ( ordTop ` <_ ) <-> ( A i^i ( 0 (,] +oo ) ) e. ( ( ordTop ` <_ ) |`t ( 0 (,] +oo ) ) ) ) |
57 |
48 56
|
mpbird |
|- ( A e. J -> ( A i^i ( 0 (,] +oo ) ) e. ( ordTop ` <_ ) ) |
58 |
57
|
adantr |
|- ( ( A e. J /\ +oo e. A ) -> ( A i^i ( 0 (,] +oo ) ) e. ( ordTop ` <_ ) ) |
59 |
|
simpr |
|- ( ( A e. J /\ +oo e. A ) -> +oo e. A ) |
60 |
|
0ltpnf |
|- 0 < +oo |
61 |
|
ubioc1 |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ 0 < +oo ) -> +oo e. ( 0 (,] +oo ) ) |
62 |
7 9 60 61
|
mp3an |
|- +oo e. ( 0 (,] +oo ) |
63 |
62
|
a1i |
|- ( ( A e. J /\ +oo e. A ) -> +oo e. ( 0 (,] +oo ) ) |
64 |
59 63
|
elind |
|- ( ( A e. J /\ +oo e. A ) -> +oo e. ( A i^i ( 0 (,] +oo ) ) ) |
65 |
|
pnfnei |
|- ( ( ( A i^i ( 0 (,] +oo ) ) e. ( ordTop ` <_ ) /\ +oo e. ( A i^i ( 0 (,] +oo ) ) ) -> E. y e. RR ( y (,] +oo ) C_ ( A i^i ( 0 (,] +oo ) ) ) |
66 |
58 64 65
|
syl2anc |
|- ( ( A e. J /\ +oo e. A ) -> E. y e. RR ( y (,] +oo ) C_ ( A i^i ( 0 (,] +oo ) ) ) |
67 |
29 66
|
r19.29a |
|- ( ( A e. J /\ +oo e. A ) -> E. x e. RR ( x (,] +oo ) C_ A ) |