Metamath Proof Explorer


Theorem pnncani

Description: Cancellation law for mixed addition and subtraction. (Contributed by NM, 14-Jan-2006)

Ref Expression
Hypotheses negidi.1
|- A e. CC
pncan3i.2
|- B e. CC
subadd.3
|- C e. CC
Assertion pnncani
|- ( ( A + B ) - ( A - C ) ) = ( B + C )

Proof

Step Hyp Ref Expression
1 negidi.1
 |-  A e. CC
2 pncan3i.2
 |-  B e. CC
3 subadd.3
 |-  C e. CC
4 pnncan
 |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + B ) - ( A - C ) ) = ( B + C ) )
5 1 2 3 4 mp3an
 |-  ( ( A + B ) - ( A - C ) ) = ( B + C )