Step |
Hyp |
Ref |
Expression |
1 |
|
addcom |
|- ( ( A e. CC /\ C e. CC ) -> ( A + C ) = ( C + A ) ) |
2 |
1
|
3adant2 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A + C ) = ( C + A ) ) |
3 |
|
addcom |
|- ( ( B e. CC /\ C e. CC ) -> ( B + C ) = ( C + B ) ) |
4 |
3
|
3adant1 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( B + C ) = ( C + B ) ) |
5 |
2 4
|
oveq12d |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + C ) - ( B + C ) ) = ( ( C + A ) - ( C + B ) ) ) |
6 |
|
pnpcan |
|- ( ( C e. CC /\ A e. CC /\ B e. CC ) -> ( ( C + A ) - ( C + B ) ) = ( A - B ) ) |
7 |
6
|
3coml |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( C + A ) - ( C + B ) ) = ( A - B ) ) |
8 |
5 7
|
eqtrd |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + C ) - ( B + C ) ) = ( A - B ) ) |