| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ispnrm |
|- ( J e. PNrm <-> ( J e. Nrm /\ ( Clsd ` J ) C_ ran ( f e. ( J ^m NN ) |-> |^| ran f ) ) ) |
| 2 |
1
|
simprbi |
|- ( J e. PNrm -> ( Clsd ` J ) C_ ran ( f e. ( J ^m NN ) |-> |^| ran f ) ) |
| 3 |
2
|
sselda |
|- ( ( J e. PNrm /\ A e. ( Clsd ` J ) ) -> A e. ran ( f e. ( J ^m NN ) |-> |^| ran f ) ) |
| 4 |
|
eqid |
|- ( f e. ( J ^m NN ) |-> |^| ran f ) = ( f e. ( J ^m NN ) |-> |^| ran f ) |
| 5 |
4
|
elrnmpt |
|- ( A e. ( Clsd ` J ) -> ( A e. ran ( f e. ( J ^m NN ) |-> |^| ran f ) <-> E. f e. ( J ^m NN ) A = |^| ran f ) ) |
| 6 |
5
|
adantl |
|- ( ( J e. PNrm /\ A e. ( Clsd ` J ) ) -> ( A e. ran ( f e. ( J ^m NN ) |-> |^| ran f ) <-> E. f e. ( J ^m NN ) A = |^| ran f ) ) |
| 7 |
3 6
|
mpbid |
|- ( ( J e. PNrm /\ A e. ( Clsd ` J ) ) -> E. f e. ( J ^m NN ) A = |^| ran f ) |