| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							1xr | 
							 |-  1 e. RR*  | 
						
						
							| 2 | 
							
								
							 | 
							1lt2 | 
							 |-  1 < 2  | 
						
						
							| 3 | 
							
								
							 | 
							df-ioo | 
							 |-  (,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z < y ) } ) | 
						
						
							| 4 | 
							
								
							 | 
							df-ico | 
							 |-  [,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z < y ) } ) | 
						
						
							| 5 | 
							
								
							 | 
							xrltletr | 
							 |-  ( ( 1 e. RR* /\ 2 e. RR* /\ w e. RR* ) -> ( ( 1 < 2 /\ 2 <_ w ) -> 1 < w ) )  | 
						
						
							| 6 | 
							
								3 4 5
							 | 
							ixxss1 | 
							 |-  ( ( 1 e. RR* /\ 1 < 2 ) -> ( 2 [,) +oo ) C_ ( 1 (,) +oo ) )  | 
						
						
							| 7 | 
							
								1 2 6
							 | 
							mp2an | 
							 |-  ( 2 [,) +oo ) C_ ( 1 (,) +oo )  | 
						
						
							| 8 | 
							
								
							 | 
							resmpt | 
							 |-  ( ( 2 [,) +oo ) C_ ( 1 (,) +oo ) -> ( ( x e. ( 1 (,) +oo ) |-> ( ( ppi ` x ) / ( x / ( log ` x ) ) ) ) |` ( 2 [,) +oo ) ) = ( x e. ( 2 [,) +oo ) |-> ( ( ppi ` x ) / ( x / ( log ` x ) ) ) ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							mp1i | 
							 |-  ( T. -> ( ( x e. ( 1 (,) +oo ) |-> ( ( ppi ` x ) / ( x / ( log ` x ) ) ) ) |` ( 2 [,) +oo ) ) = ( x e. ( 2 [,) +oo ) |-> ( ( ppi ` x ) / ( x / ( log ` x ) ) ) ) )  | 
						
						
							| 10 | 
							
								7
							 | 
							sseli | 
							 |-  ( x e. ( 2 [,) +oo ) -> x e. ( 1 (,) +oo ) )  | 
						
						
							| 11 | 
							
								
							 | 
							ioossre | 
							 |-  ( 1 (,) +oo ) C_ RR  | 
						
						
							| 12 | 
							
								11
							 | 
							sseli | 
							 |-  ( x e. ( 1 (,) +oo ) -> x e. RR )  | 
						
						
							| 13 | 
							
								10 12
							 | 
							syl | 
							 |-  ( x e. ( 2 [,) +oo ) -> x e. RR )  | 
						
						
							| 14 | 
							
								
							 | 
							2re | 
							 |-  2 e. RR  | 
						
						
							| 15 | 
							
								
							 | 
							pnfxr | 
							 |-  +oo e. RR*  | 
						
						
							| 16 | 
							
								
							 | 
							elico2 | 
							 |-  ( ( 2 e. RR /\ +oo e. RR* ) -> ( x e. ( 2 [,) +oo ) <-> ( x e. RR /\ 2 <_ x /\ x < +oo ) ) )  | 
						
						
							| 17 | 
							
								14 15 16
							 | 
							mp2an | 
							 |-  ( x e. ( 2 [,) +oo ) <-> ( x e. RR /\ 2 <_ x /\ x < +oo ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							simp2bi | 
							 |-  ( x e. ( 2 [,) +oo ) -> 2 <_ x )  | 
						
						
							| 19 | 
							
								
							 | 
							chtrpcl | 
							 |-  ( ( x e. RR /\ 2 <_ x ) -> ( theta ` x ) e. RR+ )  | 
						
						
							| 20 | 
							
								13 18 19
							 | 
							syl2anc | 
							 |-  ( x e. ( 2 [,) +oo ) -> ( theta ` x ) e. RR+ )  | 
						
						
							| 21 | 
							
								
							 | 
							0red | 
							 |-  ( x e. ( 1 (,) +oo ) -> 0 e. RR )  | 
						
						
							| 22 | 
							
								
							 | 
							1red | 
							 |-  ( x e. ( 1 (,) +oo ) -> 1 e. RR )  | 
						
						
							| 23 | 
							
								
							 | 
							0lt1 | 
							 |-  0 < 1  | 
						
						
							| 24 | 
							
								23
							 | 
							a1i | 
							 |-  ( x e. ( 1 (,) +oo ) -> 0 < 1 )  | 
						
						
							| 25 | 
							
								
							 | 
							eliooord | 
							 |-  ( x e. ( 1 (,) +oo ) -> ( 1 < x /\ x < +oo ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							simpld | 
							 |-  ( x e. ( 1 (,) +oo ) -> 1 < x )  | 
						
						
							| 27 | 
							
								21 22 12 24 26
							 | 
							lttrd | 
							 |-  ( x e. ( 1 (,) +oo ) -> 0 < x )  | 
						
						
							| 28 | 
							
								12 27
							 | 
							elrpd | 
							 |-  ( x e. ( 1 (,) +oo ) -> x e. RR+ )  | 
						
						
							| 29 | 
							
								10 28
							 | 
							syl | 
							 |-  ( x e. ( 2 [,) +oo ) -> x e. RR+ )  | 
						
						
							| 30 | 
							
								20 29
							 | 
							rpdivcld | 
							 |-  ( x e. ( 2 [,) +oo ) -> ( ( theta ` x ) / x ) e. RR+ )  | 
						
						
							| 31 | 
							
								30
							 | 
							adantl | 
							 |-  ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( theta ` x ) / x ) e. RR+ )  | 
						
						
							| 32 | 
							
								
							 | 
							ppinncl | 
							 |-  ( ( x e. RR /\ 2 <_ x ) -> ( ppi ` x ) e. NN )  | 
						
						
							| 33 | 
							
								13 18 32
							 | 
							syl2anc | 
							 |-  ( x e. ( 2 [,) +oo ) -> ( ppi ` x ) e. NN )  | 
						
						
							| 34 | 
							
								33
							 | 
							nnrpd | 
							 |-  ( x e. ( 2 [,) +oo ) -> ( ppi ` x ) e. RR+ )  | 
						
						
							| 35 | 
							
								12 26
							 | 
							rplogcld | 
							 |-  ( x e. ( 1 (,) +oo ) -> ( log ` x ) e. RR+ )  | 
						
						
							| 36 | 
							
								10 35
							 | 
							syl | 
							 |-  ( x e. ( 2 [,) +oo ) -> ( log ` x ) e. RR+ )  | 
						
						
							| 37 | 
							
								34 36
							 | 
							rpmulcld | 
							 |-  ( x e. ( 2 [,) +oo ) -> ( ( ppi ` x ) x. ( log ` x ) ) e. RR+ )  | 
						
						
							| 38 | 
							
								20 37
							 | 
							rpdivcld | 
							 |-  ( x e. ( 2 [,) +oo ) -> ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) e. RR+ )  | 
						
						
							| 39 | 
							
								38
							 | 
							adantl | 
							 |-  ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) e. RR+ )  | 
						
						
							| 40 | 
							
								29
							 | 
							ssriv | 
							 |-  ( 2 [,) +oo ) C_ RR+  | 
						
						
							| 41 | 
							
								
							 | 
							resmpt | 
							 |-  ( ( 2 [,) +oo ) C_ RR+ -> ( ( x e. RR+ |-> ( ( theta ` x ) / x ) ) |` ( 2 [,) +oo ) ) = ( x e. ( 2 [,) +oo ) |-> ( ( theta ` x ) / x ) ) )  | 
						
						
							| 42 | 
							
								40 41
							 | 
							ax-mp | 
							 |-  ( ( x e. RR+ |-> ( ( theta ` x ) / x ) ) |` ( 2 [,) +oo ) ) = ( x e. ( 2 [,) +oo ) |-> ( ( theta ` x ) / x ) )  | 
						
						
							| 43 | 
							
								
							 | 
							pnt2 | 
							 |-  ( x e. RR+ |-> ( ( theta ` x ) / x ) ) ~~>r 1  | 
						
						
							| 44 | 
							
								
							 | 
							rlimres | 
							 |-  ( ( x e. RR+ |-> ( ( theta ` x ) / x ) ) ~~>r 1 -> ( ( x e. RR+ |-> ( ( theta ` x ) / x ) ) |` ( 2 [,) +oo ) ) ~~>r 1 )  | 
						
						
							| 45 | 
							
								43 44
							 | 
							mp1i | 
							 |-  ( T. -> ( ( x e. RR+ |-> ( ( theta ` x ) / x ) ) |` ( 2 [,) +oo ) ) ~~>r 1 )  | 
						
						
							| 46 | 
							
								42 45
							 | 
							eqbrtrrid | 
							 |-  ( T. -> ( x e. ( 2 [,) +oo ) |-> ( ( theta ` x ) / x ) ) ~~>r 1 )  | 
						
						
							| 47 | 
							
								
							 | 
							chtppilim | 
							 |-  ( x e. ( 2 [,) +oo ) |-> ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) ) ~~>r 1  | 
						
						
							| 48 | 
							
								47
							 | 
							a1i | 
							 |-  ( T. -> ( x e. ( 2 [,) +oo ) |-> ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) ) ~~>r 1 )  | 
						
						
							| 49 | 
							
								
							 | 
							ax-1ne0 | 
							 |-  1 =/= 0  | 
						
						
							| 50 | 
							
								49
							 | 
							a1i | 
							 |-  ( T. -> 1 =/= 0 )  | 
						
						
							| 51 | 
							
								38
							 | 
							rpne0d | 
							 |-  ( x e. ( 2 [,) +oo ) -> ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) =/= 0 )  | 
						
						
							| 52 | 
							
								51
							 | 
							adantl | 
							 |-  ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) =/= 0 )  | 
						
						
							| 53 | 
							
								31 39 46 48 50 52
							 | 
							rlimdiv | 
							 |-  ( T. -> ( x e. ( 2 [,) +oo ) |-> ( ( ( theta ` x ) / x ) / ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) ) ) ~~>r ( 1 / 1 ) )  | 
						
						
							| 54 | 
							
								13
							 | 
							recnd | 
							 |-  ( x e. ( 2 [,) +oo ) -> x e. CC )  | 
						
						
							| 55 | 
							
								
							 | 
							chtcl | 
							 |-  ( x e. RR -> ( theta ` x ) e. RR )  | 
						
						
							| 56 | 
							
								12 55
							 | 
							syl | 
							 |-  ( x e. ( 1 (,) +oo ) -> ( theta ` x ) e. RR )  | 
						
						
							| 57 | 
							
								56
							 | 
							recnd | 
							 |-  ( x e. ( 1 (,) +oo ) -> ( theta ` x ) e. CC )  | 
						
						
							| 58 | 
							
								10 57
							 | 
							syl | 
							 |-  ( x e. ( 2 [,) +oo ) -> ( theta ` x ) e. CC )  | 
						
						
							| 59 | 
							
								54 58
							 | 
							mulcomd | 
							 |-  ( x e. ( 2 [,) +oo ) -> ( x x. ( theta ` x ) ) = ( ( theta ` x ) x. x ) )  | 
						
						
							| 60 | 
							
								59
							 | 
							oveq2d | 
							 |-  ( x e. ( 2 [,) +oo ) -> ( ( ( theta ` x ) x. ( ( ppi ` x ) x. ( log ` x ) ) ) / ( x x. ( theta ` x ) ) ) = ( ( ( theta ` x ) x. ( ( ppi ` x ) x. ( log ` x ) ) ) / ( ( theta ` x ) x. x ) ) )  | 
						
						
							| 61 | 
							
								37
							 | 
							rpcnd | 
							 |-  ( x e. ( 2 [,) +oo ) -> ( ( ppi ` x ) x. ( log ` x ) ) e. CC )  | 
						
						
							| 62 | 
							
								29
							 | 
							rpne0d | 
							 |-  ( x e. ( 2 [,) +oo ) -> x =/= 0 )  | 
						
						
							| 63 | 
							
								20
							 | 
							rpne0d | 
							 |-  ( x e. ( 2 [,) +oo ) -> ( theta ` x ) =/= 0 )  | 
						
						
							| 64 | 
							
								61 54 58 62 63
							 | 
							divcan5d | 
							 |-  ( x e. ( 2 [,) +oo ) -> ( ( ( theta ` x ) x. ( ( ppi ` x ) x. ( log ` x ) ) ) / ( ( theta ` x ) x. x ) ) = ( ( ( ppi ` x ) x. ( log ` x ) ) / x ) )  | 
						
						
							| 65 | 
							
								60 64
							 | 
							eqtrd | 
							 |-  ( x e. ( 2 [,) +oo ) -> ( ( ( theta ` x ) x. ( ( ppi ` x ) x. ( log ` x ) ) ) / ( x x. ( theta ` x ) ) ) = ( ( ( ppi ` x ) x. ( log ` x ) ) / x ) )  | 
						
						
							| 66 | 
							
								37
							 | 
							rpne0d | 
							 |-  ( x e. ( 2 [,) +oo ) -> ( ( ppi ` x ) x. ( log ` x ) ) =/= 0 )  | 
						
						
							| 67 | 
							
								58 54 58 61 62 66 63
							 | 
							divdivdivd | 
							 |-  ( x e. ( 2 [,) +oo ) -> ( ( ( theta ` x ) / x ) / ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) ) = ( ( ( theta ` x ) x. ( ( ppi ` x ) x. ( log ` x ) ) ) / ( x x. ( theta ` x ) ) ) )  | 
						
						
							| 68 | 
							
								33
							 | 
							nncnd | 
							 |-  ( x e. ( 2 [,) +oo ) -> ( ppi ` x ) e. CC )  | 
						
						
							| 69 | 
							
								36
							 | 
							rpcnd | 
							 |-  ( x e. ( 2 [,) +oo ) -> ( log ` x ) e. CC )  | 
						
						
							| 70 | 
							
								36
							 | 
							rpne0d | 
							 |-  ( x e. ( 2 [,) +oo ) -> ( log ` x ) =/= 0 )  | 
						
						
							| 71 | 
							
								68 54 69 62 70
							 | 
							divdiv2d | 
							 |-  ( x e. ( 2 [,) +oo ) -> ( ( ppi ` x ) / ( x / ( log ` x ) ) ) = ( ( ( ppi ` x ) x. ( log ` x ) ) / x ) )  | 
						
						
							| 72 | 
							
								65 67 71
							 | 
							3eqtr4d | 
							 |-  ( x e. ( 2 [,) +oo ) -> ( ( ( theta ` x ) / x ) / ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) ) = ( ( ppi ` x ) / ( x / ( log ` x ) ) ) )  | 
						
						
							| 73 | 
							
								72
							 | 
							mpteq2ia | 
							 |-  ( x e. ( 2 [,) +oo ) |-> ( ( ( theta ` x ) / x ) / ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) ) ) = ( x e. ( 2 [,) +oo ) |-> ( ( ppi ` x ) / ( x / ( log ` x ) ) ) )  | 
						
						
							| 74 | 
							
								
							 | 
							1div1e1 | 
							 |-  ( 1 / 1 ) = 1  | 
						
						
							| 75 | 
							
								53 73 74
							 | 
							3brtr3g | 
							 |-  ( T. -> ( x e. ( 2 [,) +oo ) |-> ( ( ppi ` x ) / ( x / ( log ` x ) ) ) ) ~~>r 1 )  | 
						
						
							| 76 | 
							
								9 75
							 | 
							eqbrtrd | 
							 |-  ( T. -> ( ( x e. ( 1 (,) +oo ) |-> ( ( ppi ` x ) / ( x / ( log ` x ) ) ) ) |` ( 2 [,) +oo ) ) ~~>r 1 )  | 
						
						
							| 77 | 
							
								
							 | 
							ppicl | 
							 |-  ( x e. RR -> ( ppi ` x ) e. NN0 )  | 
						
						
							| 78 | 
							
								12 77
							 | 
							syl | 
							 |-  ( x e. ( 1 (,) +oo ) -> ( ppi ` x ) e. NN0 )  | 
						
						
							| 79 | 
							
								78
							 | 
							nn0red | 
							 |-  ( x e. ( 1 (,) +oo ) -> ( ppi ` x ) e. RR )  | 
						
						
							| 80 | 
							
								28 35
							 | 
							rpdivcld | 
							 |-  ( x e. ( 1 (,) +oo ) -> ( x / ( log ` x ) ) e. RR+ )  | 
						
						
							| 81 | 
							
								79 80
							 | 
							rerpdivcld | 
							 |-  ( x e. ( 1 (,) +oo ) -> ( ( ppi ` x ) / ( x / ( log ` x ) ) ) e. RR )  | 
						
						
							| 82 | 
							
								81
							 | 
							recnd | 
							 |-  ( x e. ( 1 (,) +oo ) -> ( ( ppi ` x ) / ( x / ( log ` x ) ) ) e. CC )  | 
						
						
							| 83 | 
							
								82
							 | 
							adantl | 
							 |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ppi ` x ) / ( x / ( log ` x ) ) ) e. CC )  | 
						
						
							| 84 | 
							
								83
							 | 
							fmpttd | 
							 |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ppi ` x ) / ( x / ( log ` x ) ) ) ) : ( 1 (,) +oo ) --> CC )  | 
						
						
							| 85 | 
							
								11
							 | 
							a1i | 
							 |-  ( T. -> ( 1 (,) +oo ) C_ RR )  | 
						
						
							| 86 | 
							
								14
							 | 
							a1i | 
							 |-  ( T. -> 2 e. RR )  | 
						
						
							| 87 | 
							
								84 85 86
							 | 
							rlimresb | 
							 |-  ( T. -> ( ( x e. ( 1 (,) +oo ) |-> ( ( ppi ` x ) / ( x / ( log ` x ) ) ) ) ~~>r 1 <-> ( ( x e. ( 1 (,) +oo ) |-> ( ( ppi ` x ) / ( x / ( log ` x ) ) ) ) |` ( 2 [,) +oo ) ) ~~>r 1 ) )  | 
						
						
							| 88 | 
							
								76 87
							 | 
							mpbird | 
							 |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ppi ` x ) / ( x / ( log ` x ) ) ) ) ~~>r 1 )  | 
						
						
							| 89 | 
							
								88
							 | 
							mptru | 
							 |-  ( x e. ( 1 (,) +oo ) |-> ( ( ppi ` x ) / ( x / ( log ` x ) ) ) ) ~~>r 1  |