Step |
Hyp |
Ref |
Expression |
1 |
|
1xr |
|- 1 e. RR* |
2 |
|
1lt2 |
|- 1 < 2 |
3 |
|
df-ioo |
|- (,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z < y ) } ) |
4 |
|
df-ico |
|- [,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z < y ) } ) |
5 |
|
xrltletr |
|- ( ( 1 e. RR* /\ 2 e. RR* /\ w e. RR* ) -> ( ( 1 < 2 /\ 2 <_ w ) -> 1 < w ) ) |
6 |
3 4 5
|
ixxss1 |
|- ( ( 1 e. RR* /\ 1 < 2 ) -> ( 2 [,) +oo ) C_ ( 1 (,) +oo ) ) |
7 |
1 2 6
|
mp2an |
|- ( 2 [,) +oo ) C_ ( 1 (,) +oo ) |
8 |
|
resmpt |
|- ( ( 2 [,) +oo ) C_ ( 1 (,) +oo ) -> ( ( x e. ( 1 (,) +oo ) |-> ( ( ppi ` x ) / ( x / ( log ` x ) ) ) ) |` ( 2 [,) +oo ) ) = ( x e. ( 2 [,) +oo ) |-> ( ( ppi ` x ) / ( x / ( log ` x ) ) ) ) ) |
9 |
7 8
|
mp1i |
|- ( T. -> ( ( x e. ( 1 (,) +oo ) |-> ( ( ppi ` x ) / ( x / ( log ` x ) ) ) ) |` ( 2 [,) +oo ) ) = ( x e. ( 2 [,) +oo ) |-> ( ( ppi ` x ) / ( x / ( log ` x ) ) ) ) ) |
10 |
7
|
sseli |
|- ( x e. ( 2 [,) +oo ) -> x e. ( 1 (,) +oo ) ) |
11 |
|
ioossre |
|- ( 1 (,) +oo ) C_ RR |
12 |
11
|
sseli |
|- ( x e. ( 1 (,) +oo ) -> x e. RR ) |
13 |
10 12
|
syl |
|- ( x e. ( 2 [,) +oo ) -> x e. RR ) |
14 |
|
2re |
|- 2 e. RR |
15 |
|
pnfxr |
|- +oo e. RR* |
16 |
|
elico2 |
|- ( ( 2 e. RR /\ +oo e. RR* ) -> ( x e. ( 2 [,) +oo ) <-> ( x e. RR /\ 2 <_ x /\ x < +oo ) ) ) |
17 |
14 15 16
|
mp2an |
|- ( x e. ( 2 [,) +oo ) <-> ( x e. RR /\ 2 <_ x /\ x < +oo ) ) |
18 |
17
|
simp2bi |
|- ( x e. ( 2 [,) +oo ) -> 2 <_ x ) |
19 |
|
chtrpcl |
|- ( ( x e. RR /\ 2 <_ x ) -> ( theta ` x ) e. RR+ ) |
20 |
13 18 19
|
syl2anc |
|- ( x e. ( 2 [,) +oo ) -> ( theta ` x ) e. RR+ ) |
21 |
|
0red |
|- ( x e. ( 1 (,) +oo ) -> 0 e. RR ) |
22 |
|
1red |
|- ( x e. ( 1 (,) +oo ) -> 1 e. RR ) |
23 |
|
0lt1 |
|- 0 < 1 |
24 |
23
|
a1i |
|- ( x e. ( 1 (,) +oo ) -> 0 < 1 ) |
25 |
|
eliooord |
|- ( x e. ( 1 (,) +oo ) -> ( 1 < x /\ x < +oo ) ) |
26 |
25
|
simpld |
|- ( x e. ( 1 (,) +oo ) -> 1 < x ) |
27 |
21 22 12 24 26
|
lttrd |
|- ( x e. ( 1 (,) +oo ) -> 0 < x ) |
28 |
12 27
|
elrpd |
|- ( x e. ( 1 (,) +oo ) -> x e. RR+ ) |
29 |
10 28
|
syl |
|- ( x e. ( 2 [,) +oo ) -> x e. RR+ ) |
30 |
20 29
|
rpdivcld |
|- ( x e. ( 2 [,) +oo ) -> ( ( theta ` x ) / x ) e. RR+ ) |
31 |
30
|
adantl |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( theta ` x ) / x ) e. RR+ ) |
32 |
|
ppinncl |
|- ( ( x e. RR /\ 2 <_ x ) -> ( ppi ` x ) e. NN ) |
33 |
13 18 32
|
syl2anc |
|- ( x e. ( 2 [,) +oo ) -> ( ppi ` x ) e. NN ) |
34 |
33
|
nnrpd |
|- ( x e. ( 2 [,) +oo ) -> ( ppi ` x ) e. RR+ ) |
35 |
12 26
|
rplogcld |
|- ( x e. ( 1 (,) +oo ) -> ( log ` x ) e. RR+ ) |
36 |
10 35
|
syl |
|- ( x e. ( 2 [,) +oo ) -> ( log ` x ) e. RR+ ) |
37 |
34 36
|
rpmulcld |
|- ( x e. ( 2 [,) +oo ) -> ( ( ppi ` x ) x. ( log ` x ) ) e. RR+ ) |
38 |
20 37
|
rpdivcld |
|- ( x e. ( 2 [,) +oo ) -> ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) e. RR+ ) |
39 |
38
|
adantl |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) e. RR+ ) |
40 |
29
|
ssriv |
|- ( 2 [,) +oo ) C_ RR+ |
41 |
|
resmpt |
|- ( ( 2 [,) +oo ) C_ RR+ -> ( ( x e. RR+ |-> ( ( theta ` x ) / x ) ) |` ( 2 [,) +oo ) ) = ( x e. ( 2 [,) +oo ) |-> ( ( theta ` x ) / x ) ) ) |
42 |
40 41
|
ax-mp |
|- ( ( x e. RR+ |-> ( ( theta ` x ) / x ) ) |` ( 2 [,) +oo ) ) = ( x e. ( 2 [,) +oo ) |-> ( ( theta ` x ) / x ) ) |
43 |
|
pnt2 |
|- ( x e. RR+ |-> ( ( theta ` x ) / x ) ) ~~>r 1 |
44 |
|
rlimres |
|- ( ( x e. RR+ |-> ( ( theta ` x ) / x ) ) ~~>r 1 -> ( ( x e. RR+ |-> ( ( theta ` x ) / x ) ) |` ( 2 [,) +oo ) ) ~~>r 1 ) |
45 |
43 44
|
mp1i |
|- ( T. -> ( ( x e. RR+ |-> ( ( theta ` x ) / x ) ) |` ( 2 [,) +oo ) ) ~~>r 1 ) |
46 |
42 45
|
eqbrtrrid |
|- ( T. -> ( x e. ( 2 [,) +oo ) |-> ( ( theta ` x ) / x ) ) ~~>r 1 ) |
47 |
|
chtppilim |
|- ( x e. ( 2 [,) +oo ) |-> ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) ) ~~>r 1 |
48 |
47
|
a1i |
|- ( T. -> ( x e. ( 2 [,) +oo ) |-> ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) ) ~~>r 1 ) |
49 |
|
ax-1ne0 |
|- 1 =/= 0 |
50 |
49
|
a1i |
|- ( T. -> 1 =/= 0 ) |
51 |
38
|
rpne0d |
|- ( x e. ( 2 [,) +oo ) -> ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) =/= 0 ) |
52 |
51
|
adantl |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) =/= 0 ) |
53 |
31 39 46 48 50 52
|
rlimdiv |
|- ( T. -> ( x e. ( 2 [,) +oo ) |-> ( ( ( theta ` x ) / x ) / ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) ) ) ~~>r ( 1 / 1 ) ) |
54 |
13
|
recnd |
|- ( x e. ( 2 [,) +oo ) -> x e. CC ) |
55 |
|
chtcl |
|- ( x e. RR -> ( theta ` x ) e. RR ) |
56 |
12 55
|
syl |
|- ( x e. ( 1 (,) +oo ) -> ( theta ` x ) e. RR ) |
57 |
56
|
recnd |
|- ( x e. ( 1 (,) +oo ) -> ( theta ` x ) e. CC ) |
58 |
10 57
|
syl |
|- ( x e. ( 2 [,) +oo ) -> ( theta ` x ) e. CC ) |
59 |
54 58
|
mulcomd |
|- ( x e. ( 2 [,) +oo ) -> ( x x. ( theta ` x ) ) = ( ( theta ` x ) x. x ) ) |
60 |
59
|
oveq2d |
|- ( x e. ( 2 [,) +oo ) -> ( ( ( theta ` x ) x. ( ( ppi ` x ) x. ( log ` x ) ) ) / ( x x. ( theta ` x ) ) ) = ( ( ( theta ` x ) x. ( ( ppi ` x ) x. ( log ` x ) ) ) / ( ( theta ` x ) x. x ) ) ) |
61 |
37
|
rpcnd |
|- ( x e. ( 2 [,) +oo ) -> ( ( ppi ` x ) x. ( log ` x ) ) e. CC ) |
62 |
29
|
rpne0d |
|- ( x e. ( 2 [,) +oo ) -> x =/= 0 ) |
63 |
20
|
rpne0d |
|- ( x e. ( 2 [,) +oo ) -> ( theta ` x ) =/= 0 ) |
64 |
61 54 58 62 63
|
divcan5d |
|- ( x e. ( 2 [,) +oo ) -> ( ( ( theta ` x ) x. ( ( ppi ` x ) x. ( log ` x ) ) ) / ( ( theta ` x ) x. x ) ) = ( ( ( ppi ` x ) x. ( log ` x ) ) / x ) ) |
65 |
60 64
|
eqtrd |
|- ( x e. ( 2 [,) +oo ) -> ( ( ( theta ` x ) x. ( ( ppi ` x ) x. ( log ` x ) ) ) / ( x x. ( theta ` x ) ) ) = ( ( ( ppi ` x ) x. ( log ` x ) ) / x ) ) |
66 |
37
|
rpne0d |
|- ( x e. ( 2 [,) +oo ) -> ( ( ppi ` x ) x. ( log ` x ) ) =/= 0 ) |
67 |
58 54 58 61 62 66 63
|
divdivdivd |
|- ( x e. ( 2 [,) +oo ) -> ( ( ( theta ` x ) / x ) / ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) ) = ( ( ( theta ` x ) x. ( ( ppi ` x ) x. ( log ` x ) ) ) / ( x x. ( theta ` x ) ) ) ) |
68 |
33
|
nncnd |
|- ( x e. ( 2 [,) +oo ) -> ( ppi ` x ) e. CC ) |
69 |
36
|
rpcnd |
|- ( x e. ( 2 [,) +oo ) -> ( log ` x ) e. CC ) |
70 |
36
|
rpne0d |
|- ( x e. ( 2 [,) +oo ) -> ( log ` x ) =/= 0 ) |
71 |
68 54 69 62 70
|
divdiv2d |
|- ( x e. ( 2 [,) +oo ) -> ( ( ppi ` x ) / ( x / ( log ` x ) ) ) = ( ( ( ppi ` x ) x. ( log ` x ) ) / x ) ) |
72 |
65 67 71
|
3eqtr4d |
|- ( x e. ( 2 [,) +oo ) -> ( ( ( theta ` x ) / x ) / ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) ) = ( ( ppi ` x ) / ( x / ( log ` x ) ) ) ) |
73 |
72
|
mpteq2ia |
|- ( x e. ( 2 [,) +oo ) |-> ( ( ( theta ` x ) / x ) / ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) ) ) = ( x e. ( 2 [,) +oo ) |-> ( ( ppi ` x ) / ( x / ( log ` x ) ) ) ) |
74 |
|
1div1e1 |
|- ( 1 / 1 ) = 1 |
75 |
53 73 74
|
3brtr3g |
|- ( T. -> ( x e. ( 2 [,) +oo ) |-> ( ( ppi ` x ) / ( x / ( log ` x ) ) ) ) ~~>r 1 ) |
76 |
9 75
|
eqbrtrd |
|- ( T. -> ( ( x e. ( 1 (,) +oo ) |-> ( ( ppi ` x ) / ( x / ( log ` x ) ) ) ) |` ( 2 [,) +oo ) ) ~~>r 1 ) |
77 |
|
ppicl |
|- ( x e. RR -> ( ppi ` x ) e. NN0 ) |
78 |
12 77
|
syl |
|- ( x e. ( 1 (,) +oo ) -> ( ppi ` x ) e. NN0 ) |
79 |
78
|
nn0red |
|- ( x e. ( 1 (,) +oo ) -> ( ppi ` x ) e. RR ) |
80 |
28 35
|
rpdivcld |
|- ( x e. ( 1 (,) +oo ) -> ( x / ( log ` x ) ) e. RR+ ) |
81 |
79 80
|
rerpdivcld |
|- ( x e. ( 1 (,) +oo ) -> ( ( ppi ` x ) / ( x / ( log ` x ) ) ) e. RR ) |
82 |
81
|
recnd |
|- ( x e. ( 1 (,) +oo ) -> ( ( ppi ` x ) / ( x / ( log ` x ) ) ) e. CC ) |
83 |
82
|
adantl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ppi ` x ) / ( x / ( log ` x ) ) ) e. CC ) |
84 |
83
|
fmpttd |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ppi ` x ) / ( x / ( log ` x ) ) ) ) : ( 1 (,) +oo ) --> CC ) |
85 |
11
|
a1i |
|- ( T. -> ( 1 (,) +oo ) C_ RR ) |
86 |
14
|
a1i |
|- ( T. -> 2 e. RR ) |
87 |
84 85 86
|
rlimresb |
|- ( T. -> ( ( x e. ( 1 (,) +oo ) |-> ( ( ppi ` x ) / ( x / ( log ` x ) ) ) ) ~~>r 1 <-> ( ( x e. ( 1 (,) +oo ) |-> ( ( ppi ` x ) / ( x / ( log ` x ) ) ) ) |` ( 2 [,) +oo ) ) ~~>r 1 ) ) |
88 |
76 87
|
mpbird |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ppi ` x ) / ( x / ( log ` x ) ) ) ) ~~>r 1 ) |
89 |
88
|
mptru |
|- ( x e. ( 1 (,) +oo ) |-> ( ( ppi ` x ) / ( x / ( log ` x ) ) ) ) ~~>r 1 |