| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2re |  |-  2 e. RR | 
						
							| 2 |  | elicopnf |  |-  ( 2 e. RR -> ( x e. ( 2 [,) +oo ) <-> ( x e. RR /\ 2 <_ x ) ) ) | 
						
							| 3 | 1 2 | ax-mp |  |-  ( x e. ( 2 [,) +oo ) <-> ( x e. RR /\ 2 <_ x ) ) | 
						
							| 4 |  | chprpcl |  |-  ( ( x e. RR /\ 2 <_ x ) -> ( psi ` x ) e. RR+ ) | 
						
							| 5 | 3 4 | sylbi |  |-  ( x e. ( 2 [,) +oo ) -> ( psi ` x ) e. RR+ ) | 
						
							| 6 | 3 | simplbi |  |-  ( x e. ( 2 [,) +oo ) -> x e. RR ) | 
						
							| 7 |  | 0red |  |-  ( x e. ( 2 [,) +oo ) -> 0 e. RR ) | 
						
							| 8 | 1 | a1i |  |-  ( x e. ( 2 [,) +oo ) -> 2 e. RR ) | 
						
							| 9 |  | 2pos |  |-  0 < 2 | 
						
							| 10 | 9 | a1i |  |-  ( x e. ( 2 [,) +oo ) -> 0 < 2 ) | 
						
							| 11 | 3 | simprbi |  |-  ( x e. ( 2 [,) +oo ) -> 2 <_ x ) | 
						
							| 12 | 7 8 6 10 11 | ltletrd |  |-  ( x e. ( 2 [,) +oo ) -> 0 < x ) | 
						
							| 13 | 6 12 | elrpd |  |-  ( x e. ( 2 [,) +oo ) -> x e. RR+ ) | 
						
							| 14 | 5 13 | rpdivcld |  |-  ( x e. ( 2 [,) +oo ) -> ( ( psi ` x ) / x ) e. RR+ ) | 
						
							| 15 | 14 | adantl |  |-  ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( psi ` x ) / x ) e. RR+ ) | 
						
							| 16 |  | chtrpcl |  |-  ( ( x e. RR /\ 2 <_ x ) -> ( theta ` x ) e. RR+ ) | 
						
							| 17 | 3 16 | sylbi |  |-  ( x e. ( 2 [,) +oo ) -> ( theta ` x ) e. RR+ ) | 
						
							| 18 | 5 17 | rpdivcld |  |-  ( x e. ( 2 [,) +oo ) -> ( ( psi ` x ) / ( theta ` x ) ) e. RR+ ) | 
						
							| 19 | 18 | adantl |  |-  ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( psi ` x ) / ( theta ` x ) ) e. RR+ ) | 
						
							| 20 | 13 | ssriv |  |-  ( 2 [,) +oo ) C_ RR+ | 
						
							| 21 | 20 | a1i |  |-  ( T. -> ( 2 [,) +oo ) C_ RR+ ) | 
						
							| 22 |  | pnt3 |  |-  ( x e. RR+ |-> ( ( psi ` x ) / x ) ) ~~>r 1 | 
						
							| 23 | 22 | a1i |  |-  ( T. -> ( x e. RR+ |-> ( ( psi ` x ) / x ) ) ~~>r 1 ) | 
						
							| 24 | 21 23 | rlimres2 |  |-  ( T. -> ( x e. ( 2 [,) +oo ) |-> ( ( psi ` x ) / x ) ) ~~>r 1 ) | 
						
							| 25 |  | chpchtlim |  |-  ( x e. ( 2 [,) +oo ) |-> ( ( psi ` x ) / ( theta ` x ) ) ) ~~>r 1 | 
						
							| 26 | 25 | a1i |  |-  ( T. -> ( x e. ( 2 [,) +oo ) |-> ( ( psi ` x ) / ( theta ` x ) ) ) ~~>r 1 ) | 
						
							| 27 |  | ax-1ne0 |  |-  1 =/= 0 | 
						
							| 28 | 27 | a1i |  |-  ( T. -> 1 =/= 0 ) | 
						
							| 29 | 19 | rpne0d |  |-  ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( psi ` x ) / ( theta ` x ) ) =/= 0 ) | 
						
							| 30 | 15 19 24 26 28 29 | rlimdiv |  |-  ( T. -> ( x e. ( 2 [,) +oo ) |-> ( ( ( psi ` x ) / x ) / ( ( psi ` x ) / ( theta ` x ) ) ) ) ~~>r ( 1 / 1 ) ) | 
						
							| 31 |  | rpre |  |-  ( x e. RR+ -> x e. RR ) | 
						
							| 32 |  | chpcl |  |-  ( x e. RR -> ( psi ` x ) e. RR ) | 
						
							| 33 | 31 32 | syl |  |-  ( x e. RR+ -> ( psi ` x ) e. RR ) | 
						
							| 34 | 33 | recnd |  |-  ( x e. RR+ -> ( psi ` x ) e. CC ) | 
						
							| 35 | 13 34 | syl |  |-  ( x e. ( 2 [,) +oo ) -> ( psi ` x ) e. CC ) | 
						
							| 36 | 13 | rpcnne0d |  |-  ( x e. ( 2 [,) +oo ) -> ( x e. CC /\ x =/= 0 ) ) | 
						
							| 37 | 5 | rpcnne0d |  |-  ( x e. ( 2 [,) +oo ) -> ( ( psi ` x ) e. CC /\ ( psi ` x ) =/= 0 ) ) | 
						
							| 38 | 17 | rpcnne0d |  |-  ( x e. ( 2 [,) +oo ) -> ( ( theta ` x ) e. CC /\ ( theta ` x ) =/= 0 ) ) | 
						
							| 39 |  | divdivdiv |  |-  ( ( ( ( psi ` x ) e. CC /\ ( x e. CC /\ x =/= 0 ) ) /\ ( ( ( psi ` x ) e. CC /\ ( psi ` x ) =/= 0 ) /\ ( ( theta ` x ) e. CC /\ ( theta ` x ) =/= 0 ) ) ) -> ( ( ( psi ` x ) / x ) / ( ( psi ` x ) / ( theta ` x ) ) ) = ( ( ( psi ` x ) x. ( theta ` x ) ) / ( x x. ( psi ` x ) ) ) ) | 
						
							| 40 | 35 36 37 38 39 | syl22anc |  |-  ( x e. ( 2 [,) +oo ) -> ( ( ( psi ` x ) / x ) / ( ( psi ` x ) / ( theta ` x ) ) ) = ( ( ( psi ` x ) x. ( theta ` x ) ) / ( x x. ( psi ` x ) ) ) ) | 
						
							| 41 | 6 | recnd |  |-  ( x e. ( 2 [,) +oo ) -> x e. CC ) | 
						
							| 42 | 41 35 | mulcomd |  |-  ( x e. ( 2 [,) +oo ) -> ( x x. ( psi ` x ) ) = ( ( psi ` x ) x. x ) ) | 
						
							| 43 | 42 | oveq2d |  |-  ( x e. ( 2 [,) +oo ) -> ( ( ( psi ` x ) x. ( theta ` x ) ) / ( x x. ( psi ` x ) ) ) = ( ( ( psi ` x ) x. ( theta ` x ) ) / ( ( psi ` x ) x. x ) ) ) | 
						
							| 44 |  | chtcl |  |-  ( x e. RR -> ( theta ` x ) e. RR ) | 
						
							| 45 | 31 44 | syl |  |-  ( x e. RR+ -> ( theta ` x ) e. RR ) | 
						
							| 46 | 45 | recnd |  |-  ( x e. RR+ -> ( theta ` x ) e. CC ) | 
						
							| 47 | 13 46 | syl |  |-  ( x e. ( 2 [,) +oo ) -> ( theta ` x ) e. CC ) | 
						
							| 48 |  | divcan5 |  |-  ( ( ( theta ` x ) e. CC /\ ( x e. CC /\ x =/= 0 ) /\ ( ( psi ` x ) e. CC /\ ( psi ` x ) =/= 0 ) ) -> ( ( ( psi ` x ) x. ( theta ` x ) ) / ( ( psi ` x ) x. x ) ) = ( ( theta ` x ) / x ) ) | 
						
							| 49 | 47 36 37 48 | syl3anc |  |-  ( x e. ( 2 [,) +oo ) -> ( ( ( psi ` x ) x. ( theta ` x ) ) / ( ( psi ` x ) x. x ) ) = ( ( theta ` x ) / x ) ) | 
						
							| 50 | 40 43 49 | 3eqtrd |  |-  ( x e. ( 2 [,) +oo ) -> ( ( ( psi ` x ) / x ) / ( ( psi ` x ) / ( theta ` x ) ) ) = ( ( theta ` x ) / x ) ) | 
						
							| 51 | 50 | mpteq2ia |  |-  ( x e. ( 2 [,) +oo ) |-> ( ( ( psi ` x ) / x ) / ( ( psi ` x ) / ( theta ` x ) ) ) ) = ( x e. ( 2 [,) +oo ) |-> ( ( theta ` x ) / x ) ) | 
						
							| 52 |  | resmpt |  |-  ( ( 2 [,) +oo ) C_ RR+ -> ( ( x e. RR+ |-> ( ( theta ` x ) / x ) ) |` ( 2 [,) +oo ) ) = ( x e. ( 2 [,) +oo ) |-> ( ( theta ` x ) / x ) ) ) | 
						
							| 53 | 20 52 | ax-mp |  |-  ( ( x e. RR+ |-> ( ( theta ` x ) / x ) ) |` ( 2 [,) +oo ) ) = ( x e. ( 2 [,) +oo ) |-> ( ( theta ` x ) / x ) ) | 
						
							| 54 | 51 53 | eqtr4i |  |-  ( x e. ( 2 [,) +oo ) |-> ( ( ( psi ` x ) / x ) / ( ( psi ` x ) / ( theta ` x ) ) ) ) = ( ( x e. RR+ |-> ( ( theta ` x ) / x ) ) |` ( 2 [,) +oo ) ) | 
						
							| 55 |  | 1div1e1 |  |-  ( 1 / 1 ) = 1 | 
						
							| 56 | 30 54 55 | 3brtr3g |  |-  ( T. -> ( ( x e. RR+ |-> ( ( theta ` x ) / x ) ) |` ( 2 [,) +oo ) ) ~~>r 1 ) | 
						
							| 57 |  | rerpdivcl |  |-  ( ( ( theta ` x ) e. RR /\ x e. RR+ ) -> ( ( theta ` x ) / x ) e. RR ) | 
						
							| 58 | 45 57 | mpancom |  |-  ( x e. RR+ -> ( ( theta ` x ) / x ) e. RR ) | 
						
							| 59 | 58 | adantl |  |-  ( ( T. /\ x e. RR+ ) -> ( ( theta ` x ) / x ) e. RR ) | 
						
							| 60 | 59 | recnd |  |-  ( ( T. /\ x e. RR+ ) -> ( ( theta ` x ) / x ) e. CC ) | 
						
							| 61 | 60 | fmpttd |  |-  ( T. -> ( x e. RR+ |-> ( ( theta ` x ) / x ) ) : RR+ --> CC ) | 
						
							| 62 |  | rpssre |  |-  RR+ C_ RR | 
						
							| 63 | 62 | a1i |  |-  ( T. -> RR+ C_ RR ) | 
						
							| 64 | 1 | a1i |  |-  ( T. -> 2 e. RR ) | 
						
							| 65 | 61 63 64 | rlimresb |  |-  ( T. -> ( ( x e. RR+ |-> ( ( theta ` x ) / x ) ) ~~>r 1 <-> ( ( x e. RR+ |-> ( ( theta ` x ) / x ) ) |` ( 2 [,) +oo ) ) ~~>r 1 ) ) | 
						
							| 66 | 56 65 | mpbird |  |-  ( T. -> ( x e. RR+ |-> ( ( theta ` x ) / x ) ) ~~>r 1 ) | 
						
							| 67 | 66 | mptru |  |-  ( x e. RR+ |-> ( ( theta ` x ) / x ) ) ~~>r 1 |